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. . Chapter 7 | o ‘

e T .~ v PRIMES AND FACTORS S
: St A ¥ ' ' S . ‘.

Introdyction o S o '. I . .,

”

.Chapter 5 indicated'the need for new numbers to gnsver certain

questions that counting rumbers oennot answer, “and introduced the rational :

‘numbers. The ‘counting numbers were iden%ified with certain rational numbers.

.Chapter 6 defiped bingry operations on the rational nfmbers.

In this chapter we shall teke another look at whole numbers, inves-
tigsting a collection of ideass not only interes‘oing in themselves, but

_guseful in the study of number systems. » "
e . . - . : »
.‘.. - . g . - -
7.1 Whdle Numbers - A Netr Look c
.. We cen ask questions in terms of whole numbers thet Z&nnoH

wit} whole numbers For' example, the equation 5x =

. numbers cannot be solved with & whole number. This situetion led to ‘the

‘ development of the positive rational numbers. Nov; ‘we shall back up & bit
.. and examine the whole numbers in some detall. - JSThat some equétions of the

f,o'm bx = a, av and b whole numbérs, have solutiona emong the whole
numbers wher¢as others do not, is in itself intriguing.
Note the following equations.

T

| _Equations = ' : o . So% ion Set "
(stated with whole numbers) Sy (Restricteﬁﬁ\/ whole- numbers.)
' 3x = 3 (1)
2x = 6 . - 131}
) 5% = heo ! {8LYy
' 3x = 7 / v S o P
l‘.—_{\ 5% =9 | : p.

' ' . , - . Ny .
at 2x = 6 has & whole number solutior,, 3, but-that 5x = 9, has
, *+

e

‘no whole number solution suggests a study of multiplicative properties of
1 4
‘whole numbers . Can we distinguish those pai s of whole numbers & ) for
® .
which solutions of bx = can be found? . .*3{_3.-

» 1 -

- : : . ' : *
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X

e
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Iet us examine how whole numbers can be expressed as pﬂoducts of other
whole numbers. . . \_ - S ‘ o ' .
Given *the numbers 5\.‘ and b, we say that b is a :

o factor£2f~-3 if_and only if e'whole-number g_.oan. )
. be found ‘uch that - S . ' -
| ~ e

.\ ) ;\\

o

a .
‘.

Voo :
For example, if a =10 aid b =5, then we have ¢

’

= 10 . : o
. i, , I ' ('
"We find that ¢ equals the whole number ‘e. B
oo LT . cd S -
N 5% 2 =10 .

A

" Hence we conclude -that, 5 isdh factor of  10. .By use of-the commutative
property, we can rewrite the last equation s 2 « 5= lor.indicating thet, >
‘2 ‘is also a factor of 10. . ' ' - , '

The concept of fattor for numbers is only interesting if a restriction
is made in the definition. Iet us see what would happen if the adjeé!f%e

~ "whole" were omitted from the definition. -If this were done, then any

‘non-zero number would be a factor of. every number. ’For exemple: . .

17 would be a factor of 100 ‘since 11 -qT 100

’ “12 wou}d be a factor of 18 since 12 . % = 18 ; \
9 22 e .20 .20,
. i Yould be a factdr of V3 since T T 3 N
¢ Thus in the concept of factoring,.there is always a restriction implied.

‘Here our restrictioh is to whole .nugbers.

Beceuse the seme idea arose in different branches of methematics, other

language besides "factor" is also used; for instance: "divides", "diviqorv,‘
. and "multiple of".' "Divides" means thet division produces @ quotient without
;-_.' " a'remainder. Thus, frem 5'- 2 = 10 we sey thet 5 "divideg" lO, that
‘i\ | 5 1is a "divisor" of 10; and that 10 is & "multiple of" 5.
. . Each whole number hes meny names. For example, the number 24 may be
S written as the product.of two whole numbers. When 24 ,1is written as thé
o product of two whole numbersjy the equality-is called a product expression.
U All(é?osuet expreesions of 24 are: . .
| “aixeb=2b r 3x 8 =24
' 2x12 =24 b x 6 =
. : ‘ * 4
’ . ' ’ ‘ .
-~ : . !
-~ : N -

»
-

. . ; 158
O ‘ - o, . 8""




_ . From these produet expre sions‘ we name the po8@sible factors of 2h

. &g’ 1, 2,3, h 6, 8 12, 2k. \'.I‘_!\e factors of ‘o determine the whole .

" number replacenlents for b in \the equation bx 24 : that give whole .

_._number solutions. ' ' . ..
- What equations of the- :E'orm bx = a' can 'wve meke using a= 2k - such

S that b end x are whole numbers? ' | ' v

L C 1x=oh T . 6x

N
Fo T =2 fx=2h —

,' . B . 3\:\2’? . . . 'l& ": 2”- .
T e bx = 2 AP Shx = 24
' Does this mean- that these are the only questions of the ‘form bx = 8,
& =2k, that we can answer with x e whole gumber?” Yes, because all

t

-

factors of. 24 were uded as replacements for b. A~
Suppose other whole numbers are ‘used as replacements for b in

. . -

21& as shown below.

’

- : : 5x = 24 " _ 10x = 2k s R
' * fx. = 2bh - > 30x =’=72%& : ' .

2
_ 'Wh le e know that eaclr} of these equations has a solution which is
. a rational number, none *has a solution among the. whole numbers. Thus 1n
bx =24, b and x whole numbers, b may have replacement*l 2, 3, h
. 6, 8, 12, 24, but mey not have other replacemepts such as 5, 7, 10, 30. .«
. " In general, we see that if a and b ere whole numbers and ve want
x to be & whole number in bx ='a,.ithen\g must be a factor of &.
: = - | .

Class Exercises . o K ’ C ,

» q

' For exercises 1-3, a, b, and x are restricted to counting numbers
‘with. & a multiple of b. | Lo \

1. For a = 28; 1ist the factors of a and vrite all equations of the
-~ form bx = a, for which X has 8 solu.tion that is & wl;ole number.

2. ' Factors of a number can be paired so that their product is the given
number. For example, the factors of 28 may be paired.

- » - - ; . e o
2 A , ‘\ s
» > > . /——_\ o N ! .\
1 ‘ 2 b 7 14 , 28
.. ) 4
4

LI




ot - . . e
_’_. i . . o . o - et

- . . . . e

_Another arrangement is seen in the faotor pairs of 36. _Pré_ducp )
expressiona for 36 are -

O 1x36=36 L
ol . - o ©o3x12 =36 | # .
.o Y Ny 9% . £ . o
. - . . - ‘ . . * .. N 6 X - 6 36 . .
.. The fegtors for *36 are: 1, 2, 3, ¥, 6, 9,.12, 18, 36,
_ . The.factor pairé a.re o . e o
List the 'fac‘_tth _and*_indicate the factor pairs fori 4
- * . : X . . . i e
a., 18 b. 32 B T e, 5. -
5‘._' _For each part of Exercise. 2, how many equations of the form bx =ra
o can be writteq‘so that x is & counting number a.nd a has the value-
S indiceted? - T e
. - l . N . . - - . .
. ' N ] R '
) A - . - ) o. °°
, ' Let us explore the role that zexd pleys when factors arid products
' are under consideration. . ' e
' Bince the product of zero and any number is zero, _wé° can rule out
equations, such as ‘
- - ) ' . . : -
/, ’ _”_0 e x # 17 .

‘ “ . No whole npmber x mekes this statement true. Hehce , O.1is not a “rector
e *of 17. Consider the eguation .
‘ . O T 0 ex=0o0 )
*Every?whole numbér x makes the stafement true. Hence, O is a factor 7
oL of 0. Last, consider the equation S g | ‘ ‘
' o 17T - x =0 . ‘ -
' 'I‘he whole numper 0 makes this sentence true. Hence, 17 1is a factor

- of 0. ,However, th*s 43 not a very exciting fact since ye must- therefore
' concl}‘de thet every number is -a factor of 0. /




o+ '
- o-. . ®
- . . . ~ A * ‘
» ] ‘ . V . t
. o - - » o - . _ N . - ¥
- Since 17 is a factor of 0, we say that 17 divides O. BSince O -
. ig not a factor of. 17 ’ we ssy that O does not divide 17.. However,"

.while we sgree to s&y that 0 is a factor of O, we do not, 'in thig cese, -
say that O divides O. _ - o : S

/ . One d(s a2 factor of gny number.. In fact, cerbain counting numbers ean . .;
r B ¢ -
, be expressed &8 a product only of themselves and " 1. That - l 1s a factor 4
: _is s0 ‘obvious that it is frequently omitted in listing factors of a- numbar. *
'In some oagies, however, this is the only way that a ywhole ‘umber can be - e N
expressed as a product. F\or example: - . ) . : L > =
o i ’ 7 & » ) . * - )
. - . M . l‘ .
. T=Tx1 . 3=3X1 13 =13 x1
t- . . !
o ' . . ' ) -0 a
} In summary, -regarding zero 'Rnd one as factors, we say: - -
: \ X
.« » Zero is not a factor of any whole, number except itself. :
_ ' One is a factor ofj\very whole. number. '
. .o .
s ‘ .
™S o / Y | o
7.2 Prime Numbers ' - . : o )
. - . - . ) .
. + In ,the preceiing section, we studied factors. - In this section we -
_introduce Several classifications. of the counting numbers and leq{n how such -

.

classifications may .help*in calculating with rational numbers.

. ”

3 ) One such classification consists of even numbers . end odd numbers.

A numbex is even'if it can be expressed in the form 3 1 a vhole number. .

r >
Zero .is an even number in that zero may be expressed in the form 2n; = 2(0).
Also -base ten numerals’ ending with the digit O represent even numbers,

since each mey be expressed ih the foxm 2n. For example,

» * —

S E 4 - '_.
{ - 30+ . 15 ' ,
. 4 . . .
. ) . 3000 = 2 . 1500
- . ' b
N " # A number ig odd if it can be expressed i the form -'2n + 1. For example,
. | . . -
S 1_2.o+1 \/' 9 =2 .4+ 7
“ , | ?—2'1+10 ' WL =2%5+1
‘ ¢ d ) . 5 - & »
. . .52.. 251 ey :(9—3_ 39 + 1
* ‘ 7 3+1 T . : -

L
\d
. 1Som@tex-tbooks F;t.ate that if a whole nu.mber is div_i;itile by 2, .then
- - it/is an even number, and if a Zole numbder 1is® not divisible by . 2, then
g

1 r&ﬁnentary cla;s}-fication of the whole -~
™t

he unicursal problems?),
’

it Js ap pdd number. " This seem
». ‘- numbers into theee two>classqs has many uses . (rememb

k] €
K

. t a j. d :ll . . - ‘ ..’- .‘.

.. . ;._'\ 1' / . P

¥ . - - - e B .
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3} tér ta prove /2. 4s 1t a rational number._ e
f Whole nugbei‘e mayﬂshug b\e classified inte tvo sebs: '

.' ‘5’

-
.
1]
.

s - For. the qe:tt-‘vqlaae‘l.fioation ﬂie ghall consider only the ‘count ing numbera.
'.; If we examine éeah -of .t.he ﬁiwnfourteen counting numbers, we ‘find several. _
definite pettem‘é’ %w ﬁ!he ‘set’s of fac‘l:ors. We lis'b all fact\ors , as shown. S
A ."_' ’ 'J ' F;ﬁgr;g R "7 Factors v
1 ‘ | e
L. 1 ) : hd
O " 2’ ot . 1,2 AR .
’ 3 - . R l, 3 .‘J-
. L . - ‘ ’ . 1,2; b s
- . - ) "D © - v _ 1, 3 ‘ ’ T,
ot e T T e 12,3, 6 &
P U 1,3,9 .
‘ | 10 o , ! 1, 2,5, 10 Lo
. S . 1, 11- )
: 712-' _. : o, 1,‘2,' 3, 4, 6,12 N
. : 13 T 1,13 - R
- . ' ...lh~ '-_. . . ' 1, 2, 7, 1k | /
| _Some numbers, like X 2,“'3, 9, -7,’ and 11 can be expressed as a product ﬂ'f‘ "
' “only tk_xemsglves and 1. These numbers are called primes. Othen numbers such
| as 4, 6, 9, end 1b have Tactors different from themselves and 1. Such L
‘numbers are composite numbers. (For coi’r'irenie'nce in stating theéorems, the
.- nuinber 1 is co'nsidered neitﬂ'ier-* a2’ prime number nor a~con'1'posibe number. )
— . This discussion. leads to the definitions in SMSG Mathematics for Junior .___ -~ _
-~ | HighB8chool -Volume I which gre repeated here. o .
'j. [ A m‘ing'g number is.8 counting number, Other then 1, . wh_ich is divisible
- ‘only ‘by.itself: and l , : S g C e : TR
A coingosite number is a counting number which is divisible by a smaller
~ counting number different from 1. Thus a composite pugber is a counting
" number different from 1 vwhich is not a prime. o a .
. . When we speak of the c_o‘mB;ete {agtorization er, e refer to
| uthe number writterf as_ a. prod.uct of prime factors. reque'ﬁtly it is expetlient
) ‘-’ , : N © ,
- . ¢ '161 j . Y . ’
) " . .
_‘ ‘Y . 2 . o .

” . o . .
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_ i‘ a composite nugbex’ as a product of 1ts factors. I:E’ 175 is

. 5’2 5 x 7 ;. u%s shown ad the product of its prine factors, ..

....this 1a the complete factoriza.tion' of 1T5. Regardiess of whether‘e div‘ide
. Pirst by 5 or by T, e complete the. factorization with the sare prime

’ Jfactorsl the only diﬁ‘ere‘nce is order. RN ! e R
' : . : o& ’ s \.. > C “
I ,‘_.,..175=25x7’ 5»(5)(7 e s T o
LT E T ADEs XD =5 %5 R
e G\sessxsﬂxsxs R
¢ .,... -.. St ’ . : - . v':‘
Loel "These -indicated prqiucts are a1l equa.l Recall that changing the ~ Ve

4

v e "ordor Q:E‘ the factqQrs in multipiication‘can be-ueuompldshed by usirrg. the~ Cr .
associative ‘and, commutative properties. a v . ' o

e Y The pr@erﬁy we h‘ave Just obeerved that the complete factor‘ization *
'unique ’ is called thé Unique Factorizaticn Propexrty. v

.o

.o Uniq_ Factorization Pro;perty EVery coqnting number -
. . ' ) greater than 1 can be written as a product of
primes. Except for order, this fgctorization is >
_ P . unique- ' '_/:‘ - SRR e

This. property is snmetimes called the Fundamental Theorem of Arithmetic
Examples readily convince students of the velidity of this theorem.
(Various proofs exist and may be found in any book on number theory..)

"It is frequently convenient to use the exponential form' in the complete

. . factorization of a nhumber. For exa.mple,

N Y 3x3><2x2x2><2 32x'2".

In review, we note that the set of counting numbers may be partitioned
\anto three subsets: , : o ’

»
»

'The set of prime numbers

The se‘t of composite numbers’ P ' .

. The set’ containing the number 1 .. (g
\f ; o
. Class.Exerclses -
T %. Find the smallest prime factor of ! ) °
. (8) 135 (®) 3539 . . (c) M8k
- 5. Gilve the complete fa.ctorization of
T (a) 26 (b 210 () w1 =, oo

.
[y

6. ' give the complete factorization of 600 in'ex.ponential form.
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. T 3 Ieest' COnnnon Multiple, _‘Greetest Common Fagtor = = <v: g
‘ . : ‘I‘.he study of composite numbe-rs and. their fac‘torizations leads us to
S least common multiples and greetest common factors P ) el
Vot . The least cemmon multiple (l.c . ) of 'a set BF counting ,numbers is the

‘ .sma.llest ,count ‘number w"ni‘t:h is a multin}e ‘of each number of the . set.
Gonsider th'e numbers 6 and 16 etnd. the set of mulztiples for each.

.'.'.5: Y Set of multiples of 63 {6 12., 13 2}&, 30, 36, hz'

* . Betof multiples of. X6 {16, 39,

By inspecting ‘the two sets of mu]:tiples g;e 'see that h8 i the smellest
. muLj:.iple coﬁ‘unou to both. Hence the 1. g.m. qf ‘6 end 16. is ‘48, '

¢

. 'I‘he set. of all common multiples of &. &nd 1,6" .- ' I .
[N i . 2 ) g _
, . ' {h8 96 1Mb 192 }.. . ", .
. b ~ T e . - .
PO _ ‘Note that a set of common mnltiples for tﬁo mynbe‘rs is e].ways an infinite v
"'~ get; - there is no greatest common multiple. . o ﬁ . - .

"The . greatest common factor (g.c.f.,) of & ‘set of co;znting numbers is .

joz s8ts-

K the largest counting number that is a fector of each member of ‘the set. v
' -Agein consider the numbers . 6 ‘and 16 but this time with the set -
of factors for each, '
Set of factors of '6: _
- Set of factors of 16 /
. By inspectipg the two sets of factors we see that 2 is the .la:rgest
factor common to both. Hence the g.c.f of 6 and 16 1s 2. Thevset

> of all common factors of 6 end 16 1is

o1, 2). ) -

‘ . -
The " set of common factore fof two numbers is always finite, there 1ig

M »
x

alwa;ys a greatest common factor..
o Another method for finding the 1. c.m. and the g.c.f of two numbers
- utilizes their compléte factorizetions. The cemplete prime factorizations

J B 14

- of 36 eand 120 are given here.

i
n
n

(OV)

r. 36 3
120=2.2-2.3.5=2.3:5 N

The l.c.m. must contain all the different p'xjime factors of each N
' number ard these factors must cccur as frequently as the greater number of

4
H

» P . .
164 . _ - ‘

(' - . . 1 '

=



times they occur in either of the f‘a.ctqrizat‘ions. Thus t«he 1eaet common

multipJ.e of » 36 ~and 120 s v ot '_ -‘ﬁ " - .
S z.2.203.3. 523 5. = 360 . L
*; R The g. c.f. must ‘contain only those prime factors common to each number
\.n__' and these factors must occur. only as frequently as. the 1esser number of
«  times that they occur in the fact, prizations. Thus the greatest common  °
' factor of 36 end 120 - is 2. 2 ¢ 3 .= o 3 ., o, '
. T ] ! o . ) _.g' ) ) ‘ . . ' o Co - ‘ -
¢ . Class Exercises, . S ° . .
! .7 7. Find the i.e.n. for each pair of numbers. .~ T |
' ~ (a) 8 and 12- . (b) 1W¥ and 35 .

8. - Find the g.c.f. for each pair of numbers. S
. (a) 48 and 80 (b) 16 and 36 | .

’

9. Give the commﬁ’¢e factorization of 2k and 90 in exponential form:
* Then write their 1l.c.m. and .8 c.f. in exponential form. )

10. What 1s the greexest common factor of any two prime numbers p and q'2
What is the leest common multiple of the two primes?

4 £

-

Iet us factor completely the two numbers 32 and - 20e

L]

P=2xX2X2X2X2=2
B 2 .*
20=2x2%5=2"x5 o
- o Fr7m their complete factorizatioms, we find:
the l.c.m. of 32 and 20 is 2 x 5 = 160; -
) ! the g.c.f. of 32 and 20 is 22 = h, -

To teke this a bit further, the product of the 1l.c.m. and the.g.c.f. -is

_ 160 x h 640 .
’ o Compare this with the product of the origiual numbers 32 and 20.-
' 32 x 20 = 640

For two counting numberg, it is always true that their product is the same
8s the product of their l.c.m. and g.c.f. ’

-~

If m and Tg are, any two counting numbers, the product of
- their 1l.c.m. ‘and g.c.f. 18 m X n.
“~

[} & . <)
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1. Find the least common multiple and the greatest common factor of, 6h

e
»
-
’
oy

'Class Exercises - . 2 y . . ..

and 436. Compare the product of Egs;{ l.c.m. and g c.f. with the

product of the original numbers; _ . T .. :
v ’ B £
12, Two bells are seﬁoso that their time interval for striking is diffgrent.

(a}- One bell strikes every 3 minutes and the second strikes every

5 minutés. "If both bells strike/together at 12 00 noon, vhen , -
! ‘- will they strike»together again? _ . 3 : - '.ﬁ -t
(v) One bell strikes every, 6 minutes, and the: second be11 evsry 15 ; ’// @

minutes. Ir they both strike at. 12:00 ncon, when will they n

* strike together egain? - _ “ , .
(c) Find thé l.c.m, of 3+ end 5, -and the l.cum. of 6 and 15.
Comyaré these with answers of parts (a) and (b):

. s s . '-.
: N T . T
Tok. Some Historiceal Comments . -

The ancient Greeks. loved to study numbers . They gave fanciful and
mwstical names and . interpgetations to numbers with certain special properties.

. They spoke of triangular, square, and pentasgonal numbers because of their’

o

~ geometric properties. . . . ) i

- I ) o ¥
' . n T X °oq° R
.. e o e eeoe ° ®e o ®
° o0 ' s 00 o0 ° oo o0 * o ee 0o
o0 000 0000 o0 000 ee0e ' o0 oo o v
3: 6 10 b 9 16 5 15
Triangular- . Square ‘Pentagonal )
Numbers ) Numbers ‘r Numbers .

They also spoke of petfect and amicable numbers. These numbers had special
properties determined by their factors. Let us look at one set.of these

mystical Fumbers in more detail. )
Consider the table of fectors, of some of the whole numbers as shown .-

_below. We immediately recognize those numbers with only two factors as
being prime. -

. .

; : o A66



-i:'ii . . )
la:é: 4, 6:-. 12.
Z}., 13'. . = .

. l: 2:’7: 1k ' _' - e

5 1,'3,5, 15 B

1, 2: 1": 8: 1_;6 3
1,17 . . .'-',‘._., PR .-'.f' R ,..,"

A 2.3 6,9,18 |

"'- _'l, 19 . .. . * .

1, .2, k,'s, 10,20 . v

. oy FE

. Loy e o .
A e . '
S ‘
\\ N,oR: . . : Co.
.-‘- -. . . * - ~ . N

3’ Ii) for each whole number, we talde the sum. of ali its factors exeept‘
the number itself, we. find that the smns fall inio three groups. Certain.
-sums are greater than thelr respective numbgrs ," Stier sums . are smaller than

their corresponding numbers. . But in a ﬂew cées, the sum is the same 4s the

nugber. Such a number is called a perfe%_’r[@nber.

'. - . ' Six is a perfect number, smce S -1 | l
',._ Y 6=Z1+2+3.0 v D | ‘ oy
LR Another perfect number is 496, since’ L o o
1+96 1+2+1|»+8+16+3l+62+12u+21,,8 | _' s

Only a few perfect. numbers have been found.

In the table above showing the factors. of n, do you notice that ‘some
numbers have exactly two distinct'factoi's whereas other numbers have more

P than two? Observe that 1 1is a factor of every counting numer. Do you

notice patterns. for the occurence of 2 ,a.s a factor?  of 3 as'a factor?
of 5 as a factor?’ : ' : . -
/ -Amicable numbers are pairs c;f :numbers with ﬁhé following property: :
-, For each number the sum of all its factors except the number itself, equals
— .~ the other number. The numb_ei's 220 and 28k are examples_'of amicable
ot numbers. . S . " '

" fThe factors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, kb, 55, 110, 220. ,

Ll . 142+ bk +5+10+11+20+ 22+ U4k 55 + 110 = 284 .
The factors of 284 are 1, 2, 4, 71, 142, 284, 4 .
* . l+2+k+71+1h2=g§(_).‘ ‘

" These are the smallest amicable numbers. Ancther pair, found by Fermat, L N
To1s07, 206 and- 18, k26 : . ¢ .

. ' . . - T . ) ‘ '\
0- . * T ’ . 167 )

o . ’ A—, N

<n
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‘ ' o Claes Exercises 7 S o v ST e .
.' . . 13,. Show that 28 is a perfe , number, ' . . % .

\ - k. Co.n you find anothe:: perfect number P such that 8000 < p < 8130 ?.

]
15. _When the sum o‘i‘ all Yactors of a number exqept the number itsélf is ' '

v

not large enough to make & perfect numbef, .the sum is said to.be '
““deficient". Sums too ‘large to make a mﬂect namber .sre .8a1d to be e
- "gbundant". Indicate which of- the following t‘umbers have deficient

o :
N PR
‘ { .- sums and which hate abundant sums., oo . . s e '
et - . . . . b . 4 i
AR O R A0) 36T () 2 (@ 36 e
. .- .‘;-.." | \'l : : .I":.’ . — .' - ".._Li .: - ) . "I‘:/”..‘l'.a. -. L '
- L2 . o o - ? N A / )] ' .

" fhe propert.ies of prime numbers have, cha.llenged. mathematicians _ .
throughout the ages. Euclid theifamous G&-eek who wrote the first geometry
ﬁxtbooks called)the Elements ‘about 300 .', was able to prove that there '

3. arean infinite number of primes. e

_ Eratosthenes, Who lived about 25 B C., end is famous for hig indirect
.measurement of 't.he diemeter of Ke earth, also.studied primes. He developed '
" ‘a method’ calied .the "sieve o Eratosthenes" for finding primes by sii‘ting .
out composite numbexs. method useés the fact that every second counting
, g_.number from 2 is co site and ‘hag a factor -2; every third counting’num-_
- ber from 3 1s composite and ha® a factor 3; every fifth counting number
N .efter 5 hab a.factor 5, and soiforth. To Tind the primes less then or
: equel ‘to 100 by this method firs ist in order the counting numbers from
l- to 100 Cross otit every second fmber after the prime 2 since these f
Y are all” composite numbers that contain” the prime factor. 2. Next cross out
o » every thir’d number after the prime 3 sinee thex all contain the prime
G factor 3. ‘The number L has already bebn crc}ssed out and 1s therefore
. not prime. The next number not créssed out is the prime 5. Every fifth
. " number after the prime 5 1is then crossed out. This eliminates all eom-
° posites that are multiples of 5. In like manner 6,8, 9, and 10 have
already been eliminated as composi vhile 7 ,ar'x 11 are found to be
prime. The table should now- look ‘the i‘ollowing. Frofour work with .,

. factor pairs, we know that every composite number 100 or less with'a

..

‘ factor greater than 10 has a corresponding factor less than 10. ALl

composite numbers with factors less than 10 have already been e%imin'a‘.ted.
. . N

4
- KN

. . ' e 18

Tk e
ERIC 3 e L .
P'ull Provide ic ° N !

. . 4
-~ - M R
. - . oLl i ,




el

2 ¢ - ' _

__Thusy all com)osite numbers | in Qhe table have béen crossed out, oply the ) \
{.“pmimes aqual to or less than- 100 and the, number 1. remain:; '

T w7 steve of Eratosth.e;ﬁ'es for the nimbers from 1 ‘through 100: | |

. .@“ﬁ @ )h/l _ @ ".6, ;)®‘ & 7?9, ' ‘M'___,’ . = ~,.-_ v
@ e Q¥ » w @ E © 2 L ; pE
e @ @ X o % A H @ o ui.
% (3 o o 6 Q) #am S,
SR @ w o ® T e e I
RGN A IR A G Y T A
L@, a8 @ s H . N

D = @ om A woE @ K |
-__}r_'ae’-@,..;;ar 8 86 BT 88 B 9 |

A

1. 1s not a- prime number. . _
R While this method is useful in lodating primes equal ‘to or l%ss than D
100, Indeed,  some 2000 yeers after .
'Ihctosthenes, mathemeticians have still not found a method for finding all.
primes. . ' '
. Number Theory is possibly the oldest branch of higher matliematics. Psrt
';.ot its fascination over the years has been the ease with which problems may
| be stated.- Many problems need only some knowledge of “rithmetic apd of ‘. >
primes to be stated, '
“easily st this level;
stated, may.redhire mathematical reasoning and techniques of the highest

Remember.

it cannot be used to locate all primes.

The solution of some of thése‘problems mey be found

‘Y

others require greater'inéenhity. Some, though yimply

|

\" * ¢ ‘. s

.‘ A very elementaQy theorem to prove. ig the one already given'

’

" ,order,

or whole numbers m and n the product of their

________ . @

least common multiple and their greatest common factor

- 18 equal "to the product of m and n. o
@t.the other-extreme is the problem.known as the Golbach Conjecture: .

:Eyery even number greater <than 4 hay be;written as : ' !
. v :
. the sum of two primes. . . I
. s
- Though _some progress has been made on this problem, it has resisted

It is still only a conJecture,

. . ' . A Y B L4

"..':\ : * . . ¢
N e g
\\é\, ) : ..'_ )

a'complete 9nswer for over 150 years.

»
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_ An even\der pr%blem da’oine»back gt leaBt to Eucl.id concerns ‘the .
e penfect numbers, All the known perfect numbers, are ‘even numbqrs. No one -t
' has ever succeeded in finding an odd perfect number nor has a.nyone been able .
to show that’ the . are no odd perfect numbers. It is clear that no prime is
* a perfect number. While it is not qd’ite so apparent, the product of two odd

prlmes ,cannot be .a perfel:t number. Still hardez to prove, but trye, 1s that

’ . the product of three odd primes is not a perfec number; This is the ,sort of

" information that has been collected on thi‘s pi'oblem, but is, sti\ll a long vay
'\--_' " from a solution. SO :' o C _ > e R
: '.‘." » . 4 ,'.. \/ o . :-\ . R ‘.\ ' ' % N . ..:.
- . B, » . . T oee N . . 7 . ' ) ‘
Class Exercise . \ ) \ . %
e » ' . . . ) .~ .- PY; ‘ .° *
.. Many mathematicians have tried tp prove sthat: y Yo, o
% . o | There are no integers x, Y end z for which K x" +y" := 2" -

) if’ f\> 2. (Known as Fermat's Last 'I'heorem, it has not been

©

, droved. )

16. Using your knowledge of the Pythagorean property, exper'iment with

tn L X2+ y2 = a® vy finding replacements for X5 ¥ and z. Try some

of these number triples in xn + y n_ z with n=3 or ‘n = L,

LN

Are you successful in finding some that work?
. - . o ~ ¢ .

... T ’ - v .

- . . . ’ N »

. - t

o

~ 7.5 Positive Rational Numbers - Role of ,Factors -

l

We pause long enough to see how the fa.ctori'ng of composite numbers

may be used to lmprove the mechanics of’ opgrating with numbers that are
expressed in fractional form. The mechanical aspects of addition leave
room for veriations. Our r.notivation for addition of rational numbers

essentially depended upon finding a common denominator which is a dommon !

aultiple of the denominators. The common denominator used to add % and ’ N
, _ % was bd; in some ceses this is the smallest common denominator that i
mey be used. - . . . ' '

Let us consider several examples.. )
] -~ . - -}

_' 'Example"l. To find g— + % we note that both denominators are prime numbers.
. -

The common multiple, 15, 1is also-the least common multiple. Thus:
. 3,2 . 3.3 , 2.2 .
\ . | 5 3 5 3 35
' ) = 2.. + E
" - 15 15
_ 19
: - 15‘ . ‘ &




tih oy

- -, L ST ‘ o
g - - PN
2. To add -%; 28' we may use as a common denominator ‘ . ;
Do x 18'= 432\ The nunmbey h32 s _a common ;nultipl_e of 2k B “
S I 18. Following the method of FExample i,  we have , , .y T
Bowo T s s @ g A R e
AU o E*ECF BE W SR N
' [ ’ _ - . 90 + 120 ’ ‘ . . . N o .3'“ ’
- : . S - ST v o . et
X : - 210 . * s "'.‘ ..
’ ‘ . E-gi . ) . " ' . ' '. ' - : . )
. L A ijuick observat&_on indicates that since the numerator and denominator N ] s
e end. in - 0 and. .2, - the fraction can be reduced. to P : ‘ A v
v . Rather tha.n usipg this relatively large number, 432, as a common g S

multiple of the denomiﬁators lof T and % we can simplify our computation -
using the least common multiple of 2k and- 18...Beecause both denomipators
. are composite numbers, 'we factor the numbe;@' to determine their least common
_ -multiple. ° ' A . ' '
2k =22 c 2. 3= 23 + 3

14 2.3-3=2.3°" 4L T’.\ R

The ‘1.c.m'._or 24 ‘and 18 '1s° w23 . 328 .9=72. -

- *_IE‘- 3-*-'1%.'&“' | _ -
= lz + -2-g : ‘ ) . ,; '0
. T2 T T . 8 U
. e ) R ; o - . ;2 _ i ' . . l/
. . _ . ’ - o
Following the equation method given in Chapter 6, we may add the
‘ numbers -%— and - —8- ‘as shown below. . ‘
A~ . 4 . :
S Let x =_-2%I . -and y = T%
' (. - Men 2hx = 5 and 18y - 5. .

To' suggest the distributive law we multiply the first equation by, A8 and'
the. second one by 24 as shown at the left. We may just as well multiply

the first equation by 3 and the second by 4 as shown st the right. 1In

either case, the value for x +y can be found, The decond method, util- ..

iiing the least common multiple, simply gives the result in a more simplified

fOI'HIo -7 e . . < ‘ . °

. N * .
-




- - ' * . 0 ¢
’ - . . i \ . S
R L R
. A . : ) .. A , . . » By
f’.‘ bx = 90 C T T = 150
. Wy E 120 ' . Tey o= 20 N
. ) - v
- ;.;-"_h35x+h35y .—__~9e+120 ' A 72x+72y = 15+ 20",
e L, s (x+y) =20 . b T2 (xay)="3Be -
T A ) x+'y"-_~2l° . x‘+0-—.-3—5-' /\’——K
o - | R
9 ' . ' This last matho& is not suggestéd for t.he seventh grader.~ It is
S ‘ -‘given here
L S e’equations.
< . apparent.*
o 72=2-2-2-3-3-23 32 .
The l.c.m. of 24, 36, 72 is 23.. '3.2 =72 .
TR 7 ' s .7 3,4 2
' o vt W™/ 3T 3B 5 * 72
' ' ol 22 . 5
, . R I ¢ R
' - 48. . S
» = _‘7-5
’ " The reader, looking at the sum %% , feels imxnediateiy that .we can
_ reduce the fraction. A quick check of divisibility weveals that both 48
~ .and T2 are divisi'ble by 2 and by 3. However, let us use another
- procedure, We determine.the .gleatest common factor of L8 and -72. N
' . i } .; f’ us = 2 . 2 . 2‘. 2 . 3 - 21}‘.. 3 ,
) 72 - 2.2-2-3+.3 = 2.5 :
- " The g.c.f. of 48, T2 1is .23 3=24 . "
,‘t . ’ - &.8. = 2h .o g - g. ‘. e
: - 303 ' ‘
I'his fs the seeond time (in the same examplée that we have had the epportunity - :
to rename a rational number. : . ‘
- . It follows,that
' LY & :’:‘]K Y3 Y7 T 30 . ’
[ -' : o ’ * . 1]
> 173
22
y ®




"It is not elways possible to re&uee the results as waes done in Example 3.
" Looking at another sum we compﬁted —2 and -

15 )y we proceed - in the same,
' memmer.. . ¢ ) . CooN .
Lo LT v . i o - B 4 '
.. .’35 ..1.5:0 7 . 12;=‘2 t.2\2 (% 37n 3 ?

» . A greatest common factor.for 35 ‘and , 72 {s 1. Hence, the'fraction %%
cantiot be Teducedy f, e _ SRR I
e . Next, e examine J’Q and 15 in ‘Ehe same way. C . ' S
e - . 19 =191 > 15'=3,-5.,. SV

v . ) \

,--Ihe greatest commgn factor‘for 19 apd '15 is 1, since there are-mo

~y

common primes in the complete facwrization of these Pwo numbers. Hence,

19

the fraction I§ cannot be reduced, ’ L* . hid
Two numbers containing no’ common prime factors are sald to be relativelx.
g_r_i__ to each other. . If two relatively ‘Pprime ﬁumbers serve as the numerator .
and deno:ninator of a fraction, then the fraction is sgid to be in "lowest
terms end cannot be reduced. ' B
Prime, numbers, complete factorization, ledst common multiples, and
' greatest common factors applylt.o the study of counting numbers. The posit,i\'zé
rationa’l numbers can be defined in terms of the counting numbers. Hence, it
" is not surprising to find thgt ve make use of the idea of the least common
multiple of countfng numbers in finding the:"lowest common denominator'’ when
edding fractions. Likewise, we make use of the idea of the greatest common .
. " factor of counting numbers in "reducing fractions to -lowest terms"/  The
purpose;of this section is to illustrate t‘he role of factors and multiples in
~ operating with the positive rational numbers.
Factors and multiples play a role in all four of the fundamentel
operations with the rational numbers. The use of least common multiples is

'fevident in subtraction with rational numbers, Jjust as in addition. -For the

operation subtraction with rational numbers, we cite - the example 5% - % .
... .7 50 =2.5:5 = 2.5° : '
. #2
| 5 = 355 = 3+5
g . . :
! e l.cam. of 50, 75 1s 2.+ 3.5 = 150 . -
o S S A AT
5 > T 5 "3 *PB 2
- I . 1
T 150 .15 ~ 150
\__,,) . ,
S 174 -
(3 2:_ .




: 2 . o - ..h = 2}:' 2 = 27 ’ ./~
FaneoT oo e U500 230505 = 203 .
-' o . SRS T '
.The g.c.f. of 4, 150 is’ 2. : . R ¥ R
. . ¢ A T “ T - )
5 B gence, : 1_;6 = ?2- ’ % . % ' o \ Q \/g\
B v ’ . o N .‘ : . . ' ," - 2 o ‘:‘} "_ ’
oo - and, . ‘-‘-4\3 = m e oo \\;, .

TN ’I'he mpst common- way-to add rational numbers, when they are .na:&ﬂ h
fractions. whoee denominators differ, is to rename them with the same denom~ - .

' inator. ‘Efficiency in renaming these numbers is achieved by using their . -
 ledst common multiple. However, this will not necessarily yield the answer |
1in simplest form. The key ides in renaming & rational number in simplest .

e(f the greates_t common'fahbr of numérator and

" Fraction ‘form- is the use

’ a

denominatgr. - S S S\

Class Exercise

: 17. e. Combine, as .indicated, using complete factorizatiéns as needed. L
° 2 2 l...l . 2 . . . . -
£ . + : :
3 T 21 : : :

rd

o . b. Check the result for common factors in numerator and denomlnator.

o %

“ , Ce ,Write, in set. notation, the' set of factors for each denominator in
" (a). What is the union of these three sets? Compare this answer
. : - - with the factors determining the 1l.c.m. used in (e). ' ) ¥

.. : LA T
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™ =

¥, 1, 2,4, 8, 16, 32 =
B S

6.

A

e

1, @ u 7, 18, 28",. b

o’hx'
4

. Ce ]Tf' 5, &

T

'8.

10.

a. 26

& 6 :

a. 3

-

b., 210
c. .5447.

=
a8

I

V.

L

. »

L .
L v

28’

S -
a.;,)2;773?‘6,.9;18-; .

. . R e

Aﬁéwe mlas

R _‘;}-7x¥28

SL&‘EIE}—S_F—E .

- T
o : > 2
S
. ..
-~ . N .
" . . .

. f*’
. . .
« g .
. )
2 e
lix = 28 3
‘ot
B S

2% 13
2%x3X5X%X7
b7 % 1

( primé )

600 23x3x5

- 8o 214' vy
8. | 16
2k = 23 x 3
. l.,come =

g-c.t.

l1; pq
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e :
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e
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. 11, l.eam. = 576 ' g.c.f. = & . ' r L e
. ___ . ] .l L . - . . . . . T s
R » 576xl+ = 2304/ o~ R
. o ,‘ ' _ @ X 36 = 230k o - SR
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B . 1ler a3, -5:—-9) 12, 15,’ eee === £irst bell N
oo oo 5,105, wuy - 7 --- secongbell | g . _‘,1
. : . They ‘s\rike toge‘bher again in ~15 minutes, that+is, at . - " ‘,
s i . . - . . . . . . .8 .
Teew oL _12'15 o'clock. o ' ‘ '_4 : o i
' _ | b. 6, 12, 18 2k, 30, w. '-..- firgt. bell S e
. - o 3 ] ( C - . N v
ok ol e 15, 30, oo N\ - .- second beJ.l o N :
. T ' s strike together again in * 30 ‘minutes; _ﬁ}fat- 16}, at - T
Tl . Ce . ocnao Of 3’ 5 = 15 ' .P . . . .
. - . 1_oc’mo Of 6_, 15 = 30 ) . - " ..' .
s . 13, 28 =".1+2+l++7+1h L : : f -
k’c l.l“. ‘8128':-1+2+l++8+16+32+6h"+127+25l++508 .“_ .
o o : 1016 + 2032 + 46k ‘
: 1%, deficient: 10, 16 rf .
v : B sbundant: 20, 36 K - KR
1. - - 16. Some examples are: . _
T S R
, _ .
) . 5% 4128 =137
- _ \
h e~ _ . - 10% + 247 < 267
';(n ¢ yn =-zf}, n > 2, +has intrigued mathematicians for many years. - .
i ', * Mo number triples have been found vhich make x" + yr: = 2" true _
fOI' n > 2 . . ’ A . N b . .
N 17, a. 3 =3 | the l.c.m. of -3, 77, 21 1s 3 + 7 - 11 = 231
L J . . . . . PR
_— . "g 2 2__'22--’{- _2-3+ 5 ~11
! =1 3T 21'33u-7'677_.3 21 « 11
% _ - L R 22 _ 203
" y 2 =3 T . T2 T 3H T 31 %31
L 4 . ‘l
26
. oo . ’
] N . . ) .‘ . — M.
o ' a - RYCE .
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b. 203 =29 . 7

. e23he 7 w1l w3

N - - g.c.f. of 203, 231 =7
' 2

. A R ) 20 . 7 -. . . - .x‘- N ]

“e. A={3); B=(7,1}; C=(3T7). '
- (aUB)Ue. = (3,7, 11) T
l.c.m. of 3, 77, 21 is 3.+ 711 = 231 .
The union of the 3 _isets is the agme' as }he set of fgctorg'us'.ed

. :._""-'to determine the 1l.c.m. .
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Tooe o
L g 20’
G (e 6,18 T (B) 14,105 (c) 37, hl @
'A‘i. l/'. 'i.” Copy the following tabie for counting-number N and complete it .
N -~ ‘throuigh N = 30. '
,."F N Factors of N - Numbér of Factors . Sdﬁ of Factors'
S E-N L2 2 et 3 _\\
A ¢ 3 1,3 2 b _
3 RS 1,2,4 3 ' 7
5 1,5 2 .. 6 .
K 6 1 2,3, 6 y 12 .
S 1 7 .. 2 8- 7
FIg . . - o I. Yo
8 1,2,4,8 . 15 5. g
a. Wnich numbers represented by N in the table above have
. exactly two factors® o -, .
_ b. Which numbers N have exactly three factors? .
ﬁr ec. If N = 92 (where p 1is a prime number), how many factors
. does.. N have? ‘
N d. If . N =pg (where p and g are different prime numbers), .
’ how many'factors does N have? What is the sum of 4ts factors?
éﬁ%; e, M N-= 2k (where k " is a counting number), how many factors
e does N have} ' :
4.° fa.. Is it possible to have exactly four composite numbers between
‘ two consecutive primes? If so, give an example. .
. b.. Is it possible to havs;exectly-five consecutive composite ﬂkéi\;
- numbers between two fonsecutive primes? If so, give an example. '
‘ g t
- !
( . . . 8
’ e ) ,.._'e o . ’
hagin ! » ' "" : . ' 178 I 4o . .
- u';"::l“.‘«

..(b) 60

T

" Chapter Exercises A

" Find a-cohplé£é=factorizetion;of_eech of the following: -

(c) 81
(a) 98

Fiﬂﬁ{the least common multiple (l.c.m.) and the greatest common factor

(e) 180
(f) 258

" (g) 576

(8) 39 A S .
{n) 232h o

(g.c.f.) for eesch pair of numbexrs.
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f““'ﬁ. ~ Given the numbers 135, 222, 783, 1065. Without dividing °
. answer the foliowing duéstions. Then check ypuf answers rby dividing. . /’i
“a. Which numbers ere divisible by 37 o * '
b, Which numbers are divisible by 67 '
. c. Which .numbers are divié;ble by 9?2
" d. Whichnupbers are divisible by 57°
ug\\-;>'e. Which numbers are divisible by fé? )
- f. Wnich numbers ere divigible by 47 . N

6. 112 tulip bulbs are to be planted iﬁ_parailel_rows iuré gerden.,.
: Descriﬁg all possible arrangements of the Bu}bs if they are to be .
L _plantedfin-stﬁaight rows with en equal number of_bulbs per rov. .

7. Ten tulilp bulbs are to planted so that there will be eiaﬁtly five

rows with four bulbs in each row. Drew a diagram of this
P :
arrengement . _— - _ . ) - '

8. ' Which of the fo;léw&ng numbers are divisible by 27

L]
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R L g : e - Chapter 8
. DECIMALS, .RATIOS, AND PERCENTS
REE . - .

Yt - »

Introduction

By the time that a youngster reaches the seventh grade , he .should‘have -

-a*'%been exposed to the fundamental operations with décimals. Qnite often he

A "

will ‘oe familiar with the algorithms but not with their rationale. Thus,

he nay know hovf to "sh:li‘t" decimal points in division, but sLtrill have no,

idea why he is doing \80. . *

' A
Consequently, the first obdective in .presenting 3 unit *on .dec_i;nals in 2,
'-grade seven is t6-review the fundaniental operations in terms of their. basic

meanings. and rationa.le‘t This. proves’ to ‘be a rion-trivial task, inasmuch as

. _seventh graders all tco often Yeel thdt they know everything they should or
wish to know about decimals, at legst’ insofar as the mechanics are involVed.:
. They do not lock with favor upon what they consider to be a review of -elemen-.

- tary mathematics. It will, therefore, take "salesmanship" to convince them

‘l

of. the importance of understanding what they ‘are doing. "'h. -
ﬁ second major ob,jective for. teaching a unit on de.cimals is that the
-dmlopment of the Set. of real numbers, together with its properties, is -

best accomplished through a discussion of decima.ls. In Chapters 5-T we-

have developed the nlﬁnber system through the set of rationals. .In this

_chapter-and the next we shall use decimals to explore some of the properties

. 0

of the set of real numbers. -
There arée numerous social applications of decimals and percenté. t“hat

can bt introduced by the teacher, although most texts now tend to. place lessc

emphasis on.-such applications than has been the case ,in the past.
‘We should note here that various textbooks differ on the language that

iswdecimals. For example, although some tekts refer to
"decimal fractions,I' this terminology will be avoided here. g
. ) a o ‘;\'

LA

- . 8.1 Decimal Notation L R

"Thé notation commonly used for decimals is merely a matter of convenience. !

Actually, .we could have managed if decimals had never been invented, but it

. would have been far more difficult to compute then is now the case. We also

need decimals to help satisfy the demands of the’ ‘real world. :-Thus, the exper-

' ~_imenta_l scientist.does' not work with numbérs like Tt and 2 s but rather
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_with such rational apprBMs of these numbers as 3.1416° and 1. hl’-&? .
The history of the’ development of fractions is. an interesting-one. . The .
ancient Egyptians, for' example > wrote all of their fractions as the sum of

unit fractions; that.ls, as fractions with 1 ‘as numerator. ('I’he only

_exception was the f‘racti_ for which a special symbol was used.) For

-lel\:'

example, .they yrote: : )
- - two-seVenths &g - I]f + 518 indtead of” % v
! o e five-sixths as L,L1l  instesd of 3
P .23 S [
The Rhind Papyruf' has a set of tiles that show how to express many fractions
in,t.ems of unit fractions. ' e o
, o 'In & senne, our study of decimals begins through an extension of. this
"¢ o _System. Tha‘r is, we now wish to represent every fraction in terms of a
'.special et of f'ractions, namely those with denominators that are powers of
. ten. . : : . R
A . If we consider the set of unit,_:_jjractions with'denominators that are
powers of ten, we can ‘see that deb'itnal notation i merely .an.other way of
' naming the numbers represented by these I‘ractions. ~ For example, we write:
o v T]&—)' = .1 | (one tenth) - b‘ ot
2. - .0 ) (one-hundredth)
100 . )
,j’ 'I'(')%(—) = '.001. S qne-thousandth)
m It is important for youngsters to see that .and ,1 are two differe}

_‘names for the same number; only their form is dlfferent. Again note that
we could have gone along very well using the fractionalgforms; _‘theﬂo.ecimal a
' N notation is merely a convenience and rnot a necessity% S ,
~' . It is well to provide seventh gr"eders with en opportunity to write..

decimals in expanded f’orrﬁ, makingsuse of powers of ten and exponents. They

have already done so for whole numbers and now should do likewise for deci-

mals. For exsmple:

¥ 724 = {3 x 10%) + (7 x 207) + (2 x 1) + (& X'i%) :
o ,3.lh6,=(3xl)+(lx—1-)+(th?l)B-)+(6x.13166)
- (3x})+ (1 x =) +(ux—l-) + (6 x- 13)','"
. 10t 10 10

182
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i The similarity between this last expansion and the corresponding decimal

.. interpretation shown -below should be apparent.

L. ‘ . : . 3. ==3X.l' ,3)(1. R ‘ . .
. . . . . - -. - . = —— . ‘ ( . . ) . -
_ : . _.l.. . 1 X .1 1 x 0 o _ . . LI
O =X .0l = b x e
: . : y 400 _ T
\ T N : - - -t
- s 006=6>< -001 =6 X 3555 |
S S T3k - _ - . ,
\ : : - . - . ,
) ; o SR . .
. Recell that the value of the one's place can be written as a power of _

"’ ten using zero as the -exponent. - e ' T
. "“’* . '-:?" 7"100-_:1 ) | . . -_;-. o .
Thus, 1f desired, we may write . 'glﬁg ' ' - ) I .~l

1 h
5-67 = (5xlo)+(6x—)+(7x i
' lO : 1
) " We can -use expanded notation to-help us express decimals in fractional
. form as follows' ' :
= - L om3e (2xk L
_ 8. E | 0.23 = (2 X lo) + (3 % loo) - 3 _ '
Co . . : 10 100 - - - _ i
- . m 3 - , . . .. ‘; . m-&
L S = 100 * 100 o
A : =£3_ . 3.
' : 100 : :
, o 1 N
, be °’3¥55 =3 o) + (l X 100) + (b x 1ooo) + (6 % 15556) - \
;~,. (g ’
* PP SO S
S 10 100 1000 ~ 10000 ‘
Ty .. _ 3000, 1007k 6 @ L
L : ~ 10000 ° 10000 ~ 10000 - 10000 o
_ 31h6 - ' '
. ~ 10000 \
'.. ... » Y- .{-‘ﬁ . t ’ .
Again we note that we merely have two different ways of naming‘%he same
number, Furthe?more;uwe note that a number written with one decimal place .

represents "tenths,” one with two places represents "hundredths," gnd so torth,
For better classes this is a good place to introduce the concept of =a
negatlve éxponent. Consider, for example, the expansian for O, ,3146;

0.3146 = (3 x2071) + (1 x 107%) + (4 x 2073) + (6 x 1074y .

hed .

183 ' . o
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" . Here we note that - ‘Q-,‘\ : .
. ' : "ol 1 - \‘ 3' 1 P T !
. . ) . 10 = == } = = = 10 =% .
-, o P X\ g\ 103 R
i In general, lO'n'='-l; , where n x%s a whole number. (Indeed, it is true
S e - 10 SR B
o - - for any 'integer n.) . \;\ \\\ .

With this last definition we have now5 givgn 8 meaning to any integer as
an exponent, be it pgsitive, zZero, Or negative. \The familiar rules for com-
puting with cxponents can ‘now be extended to \include all integers as, exponents._-

For all integers a end b C '4 -
. v . b - d4+b . ..
n Xn =sn ’ Do
s ) . _ . . \,s T e,
- ' R g nb = na-b : v L e Y
ffx " This is also an excellent opportunity to extend a*ﬁtudent's-understqnding .

' of decimal notation by considering other base notations as wéll. The pattern
is the same; Fo however, instead of powers of ten, we use 'powers of. whatever
base has be'én employed. He;re are geveral examples of expanded notation in
other bases. In.each case the numerals in the expansion are written in base

~ ten notation. However, we should be careful _not to call the nm_z;_ez:ele_ on the

g

. R left "decimals" since this would imply base ten. " R
h3.23hpy e = (2 x 5208 x 57)+(3 x 1)+(2-x —)+(3 X 2)+(h X = 3
5 5
4632 S x by (exd) s 3xE) s (2x ) o
. ““seven 7 72\ 73 ?T )

, .
We can express these numeralg. as base ten numerals merely by completin@_

the indicated computation.

! 1
o '3h2five = (3 X ;) + (b x 52) + (2 x ;-3— .
= | _ 3Lk, 2t
=3 + 3 + 5 "
20 ' A
» l% '
' " 1
'.-\‘ qSince 12275— = 'l%%% , we may write: ) ‘
- C . '-3__1*-2five = TT6pen

o

A

o33

~

ORI
%L
%

184 L
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—-Additien
N The. distributive property is needed here and should be reviewed first.

Class Exercises I .

_ Write each of the following in expanded notation.

;\

‘ 2Tk, 58 S '_ 300 3201,
LI ¥ \a’om-'éseven
Write 'a_o e numersl in base ten notati_oft_i: :
5.0 B o 6._ 32. h3ﬂve N | v
T Write each of the following as a power of 2 using negative exponents.
BRI IR OR () % (@ 3 © &
f“'m‘

"8, In the following figure phie psint - P indicates' the midpoint of t‘he

interval from 0. to 1. Name the coordinate of this point with a

numeral in:

7 (a) *base two - = ' (c)_ base eight _ E
(b) bese four . . (a) base ten o e
- . ) . ’ . .
e X L -
1) AN | T ) -
0 P 1 . . ’
R _,J ’

78.2.'. Operations with Decimals

Normally one should expect seventh graders to know how to add, subtract,
multiply, end divide- z‘ational numbers written as decimals. In grade seven
oppon(‘.unitiee for. the maintena.nte of skills. At the same

_mental operations with decimals mey be treated in the seventh Lgrede.

- -~

*

Recall that this property states that for all numbers a, b, and c, we have:

a*(b+c)=88..D + a-c
.
Now. suppose we wish to add two numbers written in decimel form; for .

-example, 0.23 + O, 61& Certainly the seventh grader will know that one needs
to "line up" the gecimal points and add, but may not knOw why we proceed in

-;-\-

’ ’ . . to S ]
* . 185 v e
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this manner.

E

4,

We cem. juétify'this process byréXpressing the_numbers}in_. fij '

fractional form end then using the distributive property.

1

B . . 6 . . .
10.23 = 1qu‘ 23 X 130 © end 0. 6 = 1&5 6h X.I%B :
Thefefore, . B B
' = (23 x o) 4 L
. 0.23 ,+ 0.@ = (23 x 100) + (6% x 100) _
. . ' —_ ' .
= (23 + 6k) X 755 |
21 ) . :
. =, 87 K == lOO . | S . .
. -8 T
Ve - 7160
= 0.87 . ) '

]

We then show that this same resuli can be. obtained far E?re conveniently

- by wryting one numeral below the other.

oy - / . o .
Note how the distributive property has beep,psed twice. We gould also
have justified the addition in this menner: ‘

>

. O a3/ In this form| we are sdding the number in the 10 place in )
. 0.64 . the first adfend to the number in the fL place in the
- 0.87 second eddend, and so om. That is: _ _:ﬁﬁ:' -
| 0.23 = (2 x o) + (3 X 156 loo) o
0.6k = (6 X 35 ) + (l+ X 756 ) : L
. oml
: Y 2y < =
0.23 + 016]*, = (2 X 10) + (6 X lO) + (3 X loo) + (h' X 100) . - o
C o ,j; ' . '
= (2.+ 6) X + (3 + h) X = OO
ar = (8 X ) + (7 X . .
= 5t 160 - . e
. < S
.. = 100 100 - LT -
- , _ 8t i ' K
° v T loo N -
b - . = Oo87 .

e

0.23 + 0.6% '23(.01) + 64(.01)

.01(23 + 6h4)

501(87) = 0587 . .

Note that this latter jJustificaetion implies that we know that the

product

.01l.x 87

is equal to 0.87 .  However, this can always be explained
186 ‘ »
35
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0L X 8T = X 8T -
&
100

by returning -to fractional notation'

-
et

When regrouping ("carrylng") is involved, we can justify the usual

.

pr0cess as follows--

" Procedure: k Justification-
N 0.75 + 0.50 = (75 x £=5) + (50 X 00)
+ 0.50 o - = o
s _ | = _(75+50)><‘1'oo
* > . T 1 . ’
N \ L =" (125) x 56
. ,."xf"" ) - ’ - -]-_é- .
o _ . = 100
- 200 . 22 )
. - 106 * 100
: ' * é..
? 1+ 106 .
' ’ = 1.25
C _
\ .
Stbtraction = - - - B B

The subtraction proceés can be Jjustified in much the same manner as

~addition and the;efore need not be explored.in great detail. For exemple:
“#

. 0.82 - 0.37 = (82 x T35) - (37 x 135)
= (82 - 37) X I%G
- ¥ x 155
| b
' T - 3137,; '
- = 05 . .

- N \ . .
Again, the development mekes use of the distributive property.
Using fractions, the rationale of the subtraction. process caen be illus-

-

trated as follows:
L S

187
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Rkl st . . ) .
K - ‘ . ’ : -
. 8 ) 2 h |} .
B -2 ~
- T \c\ . = " 7 ‘
' oo o3t ) .
' 1.1, .2
- . 167107100 .
‘ -3 . L | )
10 100
. . . . Ca .. »..:-;.'.:
. . o - 10  100. 100
' — - il S
. ' o s . 100 " . . f
H , ] LT . .' ‘ .
.:."'.’l'},‘ ’ : .
) - = 16 * 100 . : . o
I T \/\ .
s 10 100 I B
. ) : . .' . . .
| b o L b 5 |
. .1'6‘“100“0‘0"“100"'1%0“-0“5*
: - | ] *
. -':7..:_'?/ - Multiplication ® e
The cess of multiplicstion with decimals may also be developed through
the use of\fractions. ,Again, it is important to realize that decimal nofation
.is merely al\convenience, not & necessity, and that we could get along quite
well using o fractions., .For example, let us consider the product _
| * 3ix 0.25 in JFractiongl form: *
' . : S . 1 - .
0.3% 0.2 = (3x7355)% (25 x—=3) .o
.o - o 10 N
. . X V “ l . 1 . *
\+ = (3x35)x (753
| - 10
D : L .
- . 1
v . 10
= 0,075 . . .

.- . ‘\ *
Notice the use of the associative and commutative property of multiplication
in going from the first to the second step. ' ‘ : . _

. : ".",':'I,'-_-'__ - . Nk _ j . h
- P37
_ _ ; ,
188
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When we see multiplication of decimals.worked out in fractional form -

- we begin to see why we add the number of decimal, piaces in the two factors

in order to find the number of_decimal places in the product._ In the_préced-
ing example we multiplied a number expressed in tenths by one expressed in
hundredths. In fractional form we found the préduct;
o B _ 2_x L L

This suggests the reason for the ﬁs;al rule of adding the number of decimal

. . places; we are; in reality, adding exponents that are powers of 10. It .

.~ may be helpful to see this process using nqgative exponents. &

-i‘ PR 0.3x 0.5 = (3x107) x (25 x 107%)
= (3x25) x (167 x 108)
= 75 X107 |
| . | = 0.075 S
e ' ”we.need to be careful, however, in our treatment of zeros, *Thus,

according to the preceding discussion, 0.4 x 0.75 produces & pfcduct :
‘expressed in thousandths. )

o | o ' L
0.4 x 0.75 (4 x 55) x (75 X T55)'

! ) ) = (h’ X 75) X (10 L )
= 300 X (——3) o
. - 10

=- -,'00300

-

However, we usually express this product as 0.3; " that is: A
. ‘ 0.300 = 1500 .

R

<10

=Oo3 .

189 3; 5




Class Exercises . : K

9. Find the sim o 45 + 0. 83 -by
thia section.

- - 10. Find the difference 0.58 -0 29 by using the fractional Approach.ﬁ

11. Find the product 0.23 X 0. l+§ by .using
" (a) a fractional approach, L
(b) negative exponents.~r-éfi,dx“§' T

s - ('
Division

The approach to division with decimals should alsd be built upon the
aseumption that the seventh grader has been exposed to ‘the topic, but needs
.a fresh look at the rationale of the process as well as practice with the-
opersation.  We mey begin by assuming thet the student knows how to divide
RIS with'vhole numbers. Therefore, if we are able to legitimately convert a
' .divi“lon problem that involves decimals to an equivalent one involving whole

numbers, then we shall be in good shape. Consider, for example, the quotient

- 53.73+ 0.5 . Written in. fractional form we have:

. w,

53.75 + 0.5 ———» 2%%2 .

100

Now we multiply this fraction by 55 * a o . b
| 53.75 , 100 _ 53.T5 x 100
0.5 100 0.5 x 100
- : - e - 5315
B . 50
~
Thus, our division problem is reduced to one that involves whole numbers
ole. We divide and find our gquotient to be 107 or 107. 5 . \
L & '
_ ) ) * N 107
R S S 0553 ——— 50|5375 .
S Y e
-~
. V - . -. V ' i - é -~
P .

150 39.‘

.
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'From our knowledge of multiplication of decimals, we can check the division

by verifying that 0.5 X 107.5 = 53.75 . - : e
We then proceed to shorten this process somewhat by "shifting" the . h
" decimal point so that only the divisdr is a whole number: .. : ~
.« S 05I5375 — 5 5375 .
T This is legitimate in that ve are really multiplying both dividend end
.. .- 'divisor by lO. That ig: » * ' ‘ R o
I % S . 2._2 1 > | ,

05

t'_we do so by noting that when the divisor-is a whole number, then.the divideud
~ and’ the.quotient must have the same number of decimal places. (This fpllows

from the fact that the product of the quotient and the. divisor.gives the. '

' dividend )  Since our revised dividend is expressed vin tenths, then the\quoz_'“

' tienﬁ must also be in tenths. By placing the decimal point of the quotient f'..: _
_directly above that of the dividend, we locate the decimal point of .the quo-_{ ' 35._“

.-_ tient automatically in the &orrect place. : 1 .

As with multiplicetion, we need to be ‘careful with zeros in the divi&end 5
when locating the declmal point>using the metﬂpﬁfjust glven. . For example, if
~ in the previous example the divisor were O.h, then we would have -
. N :
' 4,375 , .t

Here the quotient has the same number of decimal places as the dividend oﬁly

‘after zeros have .been a.ffixed to the dividend. . S a

An alternate explanstion to division with decimals thet you, the teacher, -
may appreciate is bused upon the equation showing that the product of the‘
quotient and the divisor gives the dividend. It parallels closely the first

-method shownt above. . N : , 5
- : 0.5 [53.75 ———— 0.5n .= 53.75 5
a. | | L
: Multiply by 100t 50n = 5375 “®
. - . 5(im) = 535 . ¢
' Divide by 5: 1On = 1075 , o

However, this-answerh 1075,  1is ten times as'large as we wish. There-

- -

fore, the quotient must be 1075 +10 ; that is, n = 107.5 . . :
. Exploration of the division process in terms of exponential notation is
also'revealing. For example, note how we may divide 0.125 by 0.5 :

V-

»

’ . . . ’
191 } °

) ' -

»

Now all we need to Justify is the location of the decimal point in “the quotibnt. it 2

.
.

04535~ ur——537 —k r'l":537 500 . i
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S .0.185 + 0.5

>

o Here Js a good place to give special attention and emphasis to estimstion '
of snswers. This ghould serve to. prevent many errors. in location of decimal
L pgigts. e yo;ni;er who recognizes.that 21.75 + 5 is approximately - &,
Ca wiil thén realize“ that the doc:lms.l point in the quotient should be 1ocated

-

as’*35 ERT .
" ~ This eompletes ou,r discussion on operations with decimals. In the next
chapter we will’ L ook again at decimals and see how they can be used in devel-

E . opihg the set of real numbers. N

. « N N
* . T -
- e e ) - o

oo

. . ‘Class Exewcises .r‘*-'-"' S : e

S 12.“‘14::4 the quotient o,.65 % 2.5 by . - N
' {.','-" . (a) . the equa;bion approach as given’ in this section, L, S _
.+ {b) useof en equiva.lent problem involving a divisor that is a whole e

o number S ) T : L e
¥ L SRR _——

L 4 PO

- . '.o °

8. 3 Ratio and Proportion = C : L

“~

¢ A &“112 is used to compare ‘two numbers.. When we speék of the ratio of |
two numbers, we are referring to their relative sizes. Thus, if two numbers t
_ are in the "yatio of 2 to 3, the first is ‘two-thirds as large as ‘the ™
:“s _ second. If the number of elementg in two sets 1s in the ra.tio 2 to 3,
. then every two elements of. the first‘ correspond to three elements of ‘the

sec_ond. 'Ihis ratio is sonetimes written~ag™ 2:3 . The ratio indieates a

. GOR dence between the numbers: 2 and 3. How many other pairs of .
_ - _ nunibers have this same correspondence‘? Some bf them are. /- _
S B S b énd 6. . !
\ E o 6 and 9 -
. 5 © 20 end 30 . 7 g | '
.. ’2 o 24 and 36, = ¥ |
I o 192 B | -

. * . R 41 ) . % PRy
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. 20 hours. In éach case the ratio of the number of miles traveled to the s
——— . )

A

Indeed, we have an unlimited choice of ordgred pairs of numbers that have the
.. same correspondence or ratio. In generai, any ordered pair of the form 2k

and 3k, k & counting number, are in theesame ratio, 2 to '3.. Notice

that we refer to these as "ordered" peirs of numbers. Changing the ordér of
the two numbers compared chenges their ratio. Thus, while 4 to 6 repre-
sents the same ratjo as 2 to 3, ‘6 to A& does not. The on‘ly case where

this does not .happen is when a number is compared with itself. For example

~40 to 40, T0 to TO, and a7 to 2T ell represent the same ratio.as ‘ .
1 to 1. ~ ' o

-Since many ordered pairs of numbers nay be in the %ame ratio, it is

common to express them in "reduced' form. This requires dividing each numbet

by the greatest common factox‘l‘hus ) ratios“sd‘eh as o TN
- . B : . - .
' - 160 . to 'h_ - . . -
- 400 "to 10 '
. : - 800 to 20
't 1600 to ko
t.are usually written as kO to 1. - o ..

We frequently use ratios, which are comparisons, between numbers, when

- comparing quantities such as distance® in miles and time in hours. For exemple,

using the figures sbove & person who travels 160 miles in 4 hours averages Temn .
the' same rate as one treveling 400 miles in 10 hours or -800 miles ih Ce ot 1
number of hqurs spent traveling is 40..to 1. Using “¢his ratio, 'it is likely
that.each will describe his rate as hO‘ miles per'_ ‘1. hour or simply as -
ho mph. . . . . .

.In the formula d = rt, we find that r. equals the ratio of d to t
where again the.variables reprefsent only_ numbers. Thus, we write

a Lo
' SN r= 2.

. . t . - . '~""
,This.indicates a fairly commgn practs.ce of using fractional notation to rep-
resent a ratio. In general, the ratio & to b (b #£0) is written either
a:b or- % . Ever,y ‘rationsl number can be thought of as a ratio. This again
emphasizes the interptefation of a fraction as an ordered pajr of numbers.

I_f'we have two pairs of numbers which represent the seame ratio, such as

2 to 3 or 4 to 6, we may write . -
o ' ' ' 2:3 = b6 T
am—— .
or '
2 _ b
\ ' . 3—‘6.
. udih
193 A4 v
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.Such a statement of the indicated equality of twd“ ratios is called a proportion.
. § How can we tell if two ratios are the sam6e? For example, do B and
.om 35 represent the same ratio? The ratio of -8- is the samée as 32 1 number
in the. f’irst set for every 3 in the second. The ratio 3 is the same as
; 411- N 1 member in the first set fo*every h in the second. Clearly these

describe different correspondences and we conclude that « —68- and 585 do not

. ' represent the same ratios.

Treating ratios as rationa.l numbers we can compare them using the

S property' T S - .
' : 2 .2 if and only if ad = be. '
- v :
. ' In'the example we find. 6 X 32 £ 18 X 8 and thus conclude that the.ratios ,
' are not equa.'l. (-8 t == 32 - o S S -

We are often confronted with fipnding the fourth member in two pairs of .

' numbers which name-the same ratio. For example, for what value of a will

. the ratios % and g be the same? The problem becomes one of finding a
replacement for 4 that makes the following true: - .
. Lo 1 - é '." . - X - ' e
! 5 a’ ' . L A :

'l‘he solutiqn can readily be found from the corresPonding equa'tion
| 3a=5.6.,

_ You know of the many applicatio\ns' of proportion &nd we will not dwell on
them here. - Proportion is also ‘an excellent way to approach perce_nt, ag we
will do in the next section. As some simple proportion problems , let us. .

. solve the following. _ ' '

. ¢
4. yr -

t

. '_'l,. If the ratio of department head's salary to a teacher's salary is
A ‘ 11 to 10, vwhat ‘increase could a teacher with a salary of 37600 ,
' . ~ expect if promoted to department head? . . v

- Solution: Here the proportion is ’% )
R .,‘ . - . - * . .~ - ’ ll .
_ o - LI ° 766' .
Using the condition for equa_ﬁWe
10 -8 = 11 -+ 7600
S : 10s = 83600 v
- o o L

. ’ ’ - 8 = 83600

Thus, the increase is $760.

£ - 13 1w

Voo
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N ' -0 ' ) - N * b
-2, If the ratio of the football coath's selary to g teacher?'s salary

:':' . - 18 " 115 to;:loo, what increase could,the sanme teacher expect 1f
.o e 4ssigned as coach? S ' : e
* " Solution: . ) .
—_— $: - TR
100 ~ 7600 ' .
_ 100s = 115 + T600
mS-. " o ' '
| ) = 87O, . . .
-Thus, the increase is §1140.
) ) ' ’ : .
_ The important point here (apart from the salary problem) is the method
~of- solution. It is a general method of solution and is appliedgin all
problem situations of this nature._ N
~ Class Exercises " L.
1%, Ybu have Just finished Chapter T in a book of lh chapters. What is'
the ratio of .the chapters finished to the“total number ofwchapters? w5,
. .What is'the ratio of chapters remaining to those finished? . !
i oul : o
h Find N in the following proportlons' -
h 12 : N_5
. ‘&(.a) -N'. = 15 ‘ . (c) 5._ 7 R
2 N o 6 N S e
b - LA - -— e g L Y
(v) = 9 o (a) '3=3 ‘
715. If the ratio of cats to dogs in a certain‘city is & to 3, i;e., % s

how.many cets are there to go with the 3663 dogs?.

l6..m1n a ce¥tain city people .are fond of a drink made of two ingredients in
';#fhﬁ a rgtio of 3 to 2, (sometimes 3 to 1 oreven 4 to- l) How '
' much of the second ingredient should be used to go with 32 ounces of '
~ the first ingredient (using the 3 to 2 ratio)? '

©

8.4 Percent - _ ) ! _ o

_ One of the important topics of Jjunior high school mathematics is percent."
Yet many students find. 4t either confusing or just plain boring: Part of this
reaction has come from the teacher!s lack of knowledge concerning the rela-

‘ tionship of percent to the rational numbers and mathemaetics in general., The
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' - We know that we can rewrite the above proportion as_the equation )

' other pa.rt comes* from attention to &pplications of percent- valugle to the

. et N - . s
- - : -k
-

s -

edult but simply not meaningful or significant to the Junior hi
student. o . , . , : W
The recent a.pproach to the\teaehing of percent focuses more attention on

school

percent as a way of compa.ring numbers, ‘as a form of a ratio, as a form of a
rational number, while minimizing: ‘the usual attention given to applications.

~ <+, There-is nothing mysterious sbout percents. The word "percen means

L]

hund.redths.. The symbol "%" 1s used for convenience and offers a short way

o:f seying "times 1%5 . 'I'hus, 1&8 percent means Ce R

12 to 25 ayé equal to the ratio 48 to 100 and hence nay e.lso be ex-
_pressed as 48%. While the percent notation is very common and frequently
used to express the ratio between two’numbers, it is not used directly in
calculation. "o compute with U48%, the percent must first be expressed,

_tion, first write it as a fraction with denominator 100. ‘Then by use of the
greatest common factor in numerator and denominator, simplify the fraction: >
| ‘ WE - - B - Er-E
- — oo E-IE Sk "5
'.['o express ' uex as a decimal ‘first express it as a fraction with denominator
- 100. . ! . '
18 x 100 = 48 :
S : 9
' To represent a fraction such as % as;a pdrcent we need to find the

‘number c such that . '
' ’ 1 ¢
& - 1oo :
1100 = 6-c .,

Since 6c = 100, c = 16§ . 'Thus, '

162 .
. = - 16%},’ : .
In genera.i, any glven ra.tio, '.-s‘-u,' cen bea expressed as a percent by find-
ing the number ¢ such that %z _ﬂc;_é_ . 'I"he eacpression: I55 means the dame
as.c-i-o-a or\cx ' - . e
196
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' either as. a. fractidn or ag a decimal. To.expyress th as a simplified frac- -

w8

'As a.ratio 48% compares 48 o 100. Other. ratios such a5 24k to 50 and o

.
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This development illustrates the role of proportion in percent problems.
Many nevw textboo;s including the SMSG Mathématics for Junior H gg School

' present percents exclusively through the use of proportions. This generally-
fhelps to meke ‘the subJect clearer to the student. However, students need to

master and memorize many of the,simpler percent conversions at the Junior high
level. This requires repeated oral drill and review of ‘the,decimal and percent
forms of rational numbers like , _

" r 1.1 1 1 1 1 1

"3"71:) ‘5_"3"_8’.,'5.-5"2_0-"5‘6,'” P

- As we insist that students memorize.the multiplication table as well as
'“yanow how to multiply, so should we require the ‘student to memorize basic ,;_

equivalent forms of percents, decimals, and fractions .as well as know how to
:solve percent problems through propertions. . o o
~ In the past, many Tth grade books have treated percent in great detail
by classifying all problems into three cases.. The "three cases" of percent
have been overdone and in most new books ‘this treatment is either reduced or

not found at all. All."three cases" may be. handled the same way, by writing

a proportion with one denominator equal to 100 and finding the. missing

number. Examples follow to illusirate the procedure.

l.,' It 28 out of %0 transistors failed to meet the specifications ‘for
ﬁeat sensitivigy; what. percent of ‘the transistors are defective?

Solution: Since the total number is hO and the number defective ia
. *_ .
28, the.proportion is , o

28 c ~
50 ~ 100" ' .
- 80 that -4oec = 2800
. c=T70.
Thus T0% eare defective: . -
2. If Janice needed $70 for a cheerleading outfit and earned 92% of

the total by babysitting, how much money aid she earn? -

Solution: Here we know both the percent and the total, so that” our
proportion is

: 8 _ 92 - ‘
S : 70 ~ 100 2 :
Co c._ 92 . 70
oo e &= 77100 i
. ‘ ", & = 6400 k.

Thus, Janice earned §$64.40 .
. - 197 .
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3, Ina bex of ballbearings, 11 are_rejected b&'en inspector as.being' k4
faultys If this represents thz of the total production, how many °
: ~were produced? . . ' >
. : -4 N
* ﬁ. olutiop: _In this ease we . know the percent and the pert or number. ;
. - reJected s0 our proportion is
- Tl b »
o B 7100 . .
) " bbb = 1100 - | ‘ |
. _ : o, v ' _ .
z~Experieneed teschers will'recegnize each of the‘ﬁbgye problems as one of
'the "three cases" of percent. Notice how all Qgree'arectreatedlihe'seme vay
through the use of proportions. With. experience students will begin to short-
cut writing the proportion, but at the beginning this approach is a simple one
for the sfudents to master. Much of the rationale for this work has already
‘abeen done in.-the treatment of ratIonals and decimala, so that most of the
material is not new. - , : : : ' ‘e
One shorteut in writing the proportion is to replace‘xhe percent (i%E)
by an equivalent decimal or simplified fraction. This can be easily done
) once the students have developed skill in recognizing the reiationship among‘ﬂ3
, the percents, decimals, and fractional fo?hs‘of rational rumbers. This short-’
cut repleéee the propeition with the familiar forpula - o
. ‘ e ‘ ' ‘ P=rXb. - « ';N‘ 4
- The ﬁdsgahles p, T, eand b represent numbers: . ' ; )
§ 2 + T 1s the rate or percent; .
t . b . is the base or number on whicp a rate is applied;
- - p *is the Egrcentgge or part of “the base determined by T

the rate.

_ Notice that the term "percentage" has a meaning quite distinct_from .
o . "percen:t," - X . B} . - . ™

Again percent problems: shoald not be classed into three cases but all™
golved directly from the same formule, p o= r X b. In this form the three

~

e

‘exgmples just given are expressed as folléws:

1. p=rXb-. ‘ 2. p=rXb * 3, p=rXb

~ 28 =1 x ko  p=2=x10 11 =2 b
= E = 100 100

.r=T08 . p = 64.40 b =25 X

Ay o
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If the student is first introduced' to the, solving of percent problems , ;

through the use of proportions, there is leass chance that he will have
difficulty identifying the percentaée and the beee properly when using the .

‘equation form._ . ) S S NEEEERE =

01ess ‘Exercises

17.

é~(b)

19.

20.

\
' standerd for comparison. Thus, terms such as "an increase of 25%" ~EN

a salary of §4.40 per hour reflects & 108 increase over a sslary
of $4.00 per hour. : . sy

Write each of the follow:ing as a percgnt' .

el e RN i l R
. SRR gg% S ‘ .

Find the fraction which corresponds to' each of the foliowilﬁg percents:

\

.{)}IHV’I"."

AP . . >

WA,

(a) 37%}: . (c) 26% Loy o
® g% @ samg e

s RS \
Changes are often given in terms of percent in order to provide a 5

\\*\x -
or "a 1oX decrease" are encountered. Students sometimes have - - \

difficulty in setting up the appropr-_iate proportion. The change in - i\g
_either case is expressed as a part of the original. quentity. Thus, BN

If a person receives an 8 X pay cut during a retrenchment" and

_ later receives an 8 X increase, how :does. his final salary compare

with his origmai salary?

1y

If, a book is printed by a photographic process which reduces th?
8 to be h,;-

original by 15X, how long should a segment be if 1t\
‘in the finished book?

« - - - - - . —

Students are frequently troubled with percents less then 1 % and

greater than- 100 X If percents have been: introduced as another way of

representi ratio or fractional name for a rational number, then students
should have little difficulty with these special percents. 'Indeed., there
is nothing special about them; they carry exactly the same meaning as per-

cents from 1 x to 100% and they are used in operations in exactly the

" same way. Recalling the definition of percent, we can write

199



iy - .
SR, L -

l ’-'- l,. ‘e
S g%-3-1%
 gtmtleny, ¢ o |

S 10K - 101K - g ot

o
i\ Lt

B ) Y

. Writing a numeral such’ as % 'pr as a percent poses certain problems.
' "Primarily, these are problems of fojm in'notation rather than enything else.
-. Thus, writing é as a percent gives ) ' : '

(o]

f
=
gl

o er - L
“_ R " . ) . . .121 - Totiee e - :. . -
We may write 12-X, or -1-—- , which fs gwivard end clumsy, or
o 125 The last.form is probably ‘the most uséful for calculations.
2. Y similar problem a.rises when we write. %- as a percent.
5 : 3 100
or , _ o '
' 0-33-3»7_'__‘-'-- R

, ' Here again ve have alternate forms for expressing the result. We may write e
o o . ,33}. : : { : L
"3333: 'Tﬁg_ ’ 333 ’ o_r .333 .. ‘@8 the resulting. percent. More-‘_:_ A

attention will be given 'to repeating decimals like 333 ..s: in the next

chepter. ' .. |

’ This chapter has dealt with several topice, some of which appear in q
. . seventh grade book whereas others are found only in newer texts. The discus-

- sion of ratio and percent was brief, being related.to the. previous work on

o rational numbers and decimals: Presentation of these topics in the classyoom
is probably best done with the same approach, ra.ther than treating them as '
| . letely separate entities that are new in all respects. . Using the student's
' bagyoun_d_ in these areas makes.the topics easier to teach, learn, and recall.

~ ) .
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_ Answers to Class Exercises

e (2% 10%) + (7, %°20) (n X1) (5 x 1.0) + (835
. . 10

-
..2..,.(9x1)+(0x—-)+'(8x 2)+(7><—--)+\5>~<-‘-r;) ’
| 3 ‘.(3x5)+(2x1)+(hx-)+(1x——)

. » ’ 5
ke (2x1) +(Ox--) + (hx-g_s') * (lx ) ’ (6><-;;)
L PR - _
1. -'(a)‘ a-‘? w2t (e 2t @ 23 e 2
8. (a) ..’].'.two- (p) '.'?fouf Sc)- b eight (d) '.5£exi_
S 9. 05 + 0183 = (45 x g55) + (83 % 1) o
A “‘5+83)"100 K
, . .'.-..-. . = j£.8,x 'i'o"(')' i
= 100 -
o = .].'.O_Q + .E.i.. .
. . _ ~ 100 ° 100 Lo T
o . y = 1, 28 . - )
10, 058 -0.29 = (58 x 100) - (29 x J,oo) | .
- (58 - 29) 100
o 1
= 29 X155
. 29
= Yoo
=. 0.29
11. (&) 0.23 x 0.45 = (23 x ——-) x (45 x ~——)
: . , | 10° 10°
= (23 x 1) x5 xars) .
102 10° . L.
. . B . . 1 -
. - = 103 X v
= 0.103%
(b) 0.23x 045 = (23 x 1072) x (45 x 107°)
' L., = (23 x ¥5) x (1072 x 10‘2) .
’ - lomoaxiot
- J . . ~—
= 0.1035 . ¢

» T2l
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'. " 150
16,

18,

. F

Y3

13.

1k,

,

17.

19.

20.

.(a) e 5|'o'.E§ —-.2 5n

'(b) 25|o?3. — 25!'3'" —25 [3.50

'fltoa, ltol .

#

06 igw

260

]
$

T . - 250 n
/ ' : .. 1000 n
. n = 026

n

c -

/ . .
(a) 5 Rt W © 2 @5

488k

(2) 208 - () u% () 3% (a) 5000%.

- 3 . i - 1 ) . .l - l . hl . s
(a) . (v) 555 . (c) 5% o (d) 860 .
The salary will drop to 92% of the original salary and then be.
increased by 8% or en additional T. 36%, to end up as’ 99. 36

_ of thesoriginal. As an exemple & salary of $1000 would be $920%
with an 8% decrease. To increase this salary by 8% wve take

8% of $920° or $73.60 so ‘thet the final salary is only '$993.60 .

v

5 inches -
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Chapter Exercises "~

. l. _Write each of ‘the folloﬁing,iqnexpahded notation.

. (a)'_._32.785:_ e (b) b2.3ble. .

2. Wnich of the following statements are true?

(a) 3'l=-;-- '. | - (a) 3}1—=2‘.5

m P00 (e 33
(¢) 573 = 5= o gy WS
@27 W

a

<3, Using therfréctional‘zggggtahfgiveﬁ in this chapter,:evaiuate
B . oo . ’ .o

: ‘each of the following: L N . -
(a) o.27 Four- = - 4i(b) ok xo0.37°

. Find N’ in each of the following proportions:
’ . 73_‘.1:]-_ . . ’ , 5“_6_
wg(?) E =% L | -(b)~-6 "N |

.5, If two triangles have” the same shape, we say that they are similar.

-e

We define similar triangles to be triangles with corresponding

angles congruent and corresponding side; proportional. Ir A ABC .
.and A DEF ere similar with the ratio of corresponding sides- 3 to
2, find all sides if . AB = 6, BC = 12, and DF = 10. '

-
_ l e
' 6, Write each of ‘the folloﬁihg as a percent. LA
L e ‘ ' : : S
e ' < 1 1
(a)* 10 ‘ (v) .1 () 15 () 155 (é) 1566

"7, et A=15 and B =20 .
(a) A 1is what percent of B?
" (0)®B  1s what percent of B?
(c) A ié'what percent of their sum?
() B 1is what percent of their product?
(e) Their difference is what percent of their product?
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Chapter 9

PR . . The Real Number System

Inbroductian

Thie chapter will complete oﬁr development of the real number syetem
~as it ehould be seen by the Juhior_high‘schqol student.. Ali too frequently,
students at this tevel fail %o see the complete picture of the real'number
‘system and hence enter into algebra with certain gaps in their background.'

»
. . .
- . Y

— . co. N . »

'j9 1 Reviewigg,?roperties of thq,Rational Number System

-

——

. In the past’ chapters we have developed the properties. of the rational
.number system. All solutions to equations of the form bx =.a; a eand br'
" counting nuﬁbers, are positive rational numbers. With their. opposites
) (negétives) and zero, they form the complete sep'of rational numbers.
.__ Likewise, we noted that every rational, number can be named by a fraction
- in the form B- where p and g are integers, q # 0 «
You already have observed the familiar properties for rational numbers,
. which may be summarized as follows: ' i
' Closure: If a and b -are rational numbers, then a + D is 8
rational number,‘ a » b (more commonly written ab) is 8 rational number,
a - b is & ratipnal number, and % is a rational number if b £ 0.
Commutativity: If & end b are rational numbers, ' then
a+b=b+a, and a-b=>b-a, (ab=nba).
‘Associativity: If s, b, and c¢ are rational numbers, then
L a+ (b +c) gla+d)+ec, and albe) = (ab)q. - P

. 8 .
Identities' There is a ratiopal number zero such that if a 1ls a

rational number” then a_+ 0.=0+as gm There 1is a rational number 1
" ‘such thet a +1='1.a-=a. e e
T Distributivity: If &, b, and.' c are rationsl numbers, then

_a(b. +¢) = &b + ac. . .
Additive inversé: If a 1s & rational number, ‘then there 1s a

rationel number ("a) such.that a+ (" a) = 0. £ . )
. MuI%ipiicative inverse' .If,a 1is a " rational number snd. & {0,

',

_then there is a rational number b such that a8b = 1. ' . .
Order: If a end b are different rational numhers, thiy .
eit?er e“>‘b,- or a <b. . ¢ " '
. ] i .
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. 9.2 Repeating Decimals - ' 3 , i i
Let us look_ahcg.again at the;usgzpf decimals insrepresenting rational

. numbe.rs._ The counting numbers, which form a subset of the set of rational
‘numbers, are expressed inh decimal form simply as ' . o

1’ 2.’ 3’)'" 5, 6, 7, ee . ) ) . i . , \

-

Otherspositive rational numbers written in-fractional form can reedily be
represented as decimals.. If a fraction has a denominator that is a power of

. . " ten; it is easy to.write the fraction as & decimal chauée..our decimal system ,
) , .of notation is based on powers of. ten. For eXamplt;: ’ o e ’
. (3 - . 2 . . R l...4
03 To=03T - 023 '
. - R . ' .
. -~ " If the denominator of a fraction is not a power of ten, the fraction I
' ALan often be changed to an equivalen'l: one whose denominator is a power of.
~ o~ . .t
. 4ten, For example: L .o _ LT
. N 3.6 1125
T e 5'710'0’6 . 8= Toog T &1
: " ¢ Y
On the other hand, & fraction like 7 cannot be written with a denom-

Vin'a;t.or thet is a power &f ten afd a numerstor that is e counting nuptber. <
. ) 'To show that this cannot be done, suppose for.a moment we assume that we
. | cen write such an equivalegm fraction. If such a fraction does exiet, then _
“we would have twp ways of.naming.the-number on_e-seventh and we could write . |

. 1_8 | - -‘

I T 10 A
where a is a counting number and n indicates the power of’ ten. Using
the prope“ty that if % %, then ad = bc, we get . !

'_ N 1 - 10 =7 «a . [ . ; q

. . : n \n n n
Now 10 can be factored as -2 =5, s0, 610 =(2 %) =2 s
’ ."._.. we-.cm 4?&1;‘i"t’e‘,f.~ . . . e e e . : : ;'I":; “Jhi"'. ,f"%\,
Co R ’ ” . .l - =

. 1-2-5“57-a.

~

. The expressions on the left and the right of the equation represént two (
_ factorizations of the same pumber. One involves the prime factor '7,_ the

. 6tHer does not. But this is impéssible since the Fundemetital Theorem of
Arithmetic éqys that & riumber has exactly one unique prim }'actorizati?n.
Therefore, ‘we coneclude thgt our original ‘assumption ié fal é,'an.d that
/ canr;ot be expressed as & fraction with a denominator that |8 a power of

1.
T

.~ ten end » numerator that is'a whole number. -

.
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.'\' 1 by the denominator 7.
~.can we have a "0 remainder because this.implies ‘that we can write

le
«

We can, of course, express %
“We already know that at no stage in the division

in decimal form by diwiding tne numerator :

- fraction with a denominator that is a power of 10.

there are only s1x remainders possible, (1, 2, 3, &, 5, 6).
of these numbers appears for a second time, the sequence of digits in the

L ]
by
~

L

' quotient will repeat. .

7|l OOOOOQQ

At this point the

in the, quoticnt and will continue to repest indefinitely.

- usually written in the‘follow1ng form.

Ty *hat repeats.

h

7

The “bar (vinculum) over the sequence ~ 142857 _
The three dots indicate that the pettern repeats indefinitely.
Note that the sequence of digits started to repeat in the quotient as
soon as one of six possigie remainders appeared for the second time.
does not imply that all poss1ble remainders must appear.
Here the set of possiblé

= = 0. 1h2857‘5‘85_

example, the decimal representation for

remainders contains ten-elements;

two of these remainders are used,

.1818
11]|2.0000, *
11

.. , %
A 20
- 11

however, the repetition begins after only

20(

Therefore, as we divide,

This is the samé as the
first remainder.

(sequénce of digits lh2857 begins to repeat itself
The guotient is

indlcates the set of diglts

As soon as one

Consider, for



v Other examples of this notation for repeating d,ecimals are’ given hera..

'.1.= T }_-' o __l__ ‘
9 ,l)'l 13 .230769230769..., 55 .001001.. .

The symbolism adopted for repeating dacima.ls cén be used for all.decimal
expansions. of rationa.l numbers. . For example ) we w write

e mr T aa
-

.- 1 06 =v.606 .. ..
' " : E=0125—01500 ses - ) LT '_._
. In this sense we can then say. that every ra“t.ional number can - be expressed

as.a repeatina decimal, often called a periodic decimal ‘See of theae, as.

% -and % above, will repeat only zeros. " These are frequently called 13

"terminating! "in ‘the sense ‘that the repeating‘ zero need ‘not be written in .
- the. decimal ) S : . e T » _
--How can we tell when a fraction % can be written &8'a fraction with =

L a denominator that is a -power of ten? These are the fra.ctions that have i
- terminating decim.al forms > -that repeat zeros only. We start with the rati&na.h
number- %; p endq  relatively prime. Thet 1s, let P— be in lowest t}ems._
~ First let us note, intuitively, thai; if a fraction has a denominator}
that can be written as the product of a power of 2% and/or a power of - 5 '

then it can be expresSed @e & power of 10. Here are some exanxples. \ 'ﬂ
SR TR TR S U - 3@ 2B, |
lo. = % = - = ) .
. 25 52- 2.5 (2.5 103 000 \
S, 13 692 692 2 62 Y
-2 2500 —“Lh' 'FZ;E @ - 5) ‘2'5 o f& :

. In other words,. we can multiply by appropriate ,powera of 2 and,5 in order 7
_;to pgoduce a denominator that is a power of 10.

. v

In general, e wish to see which rational numbers % can be written in

Y

the . form __IF_K, s where; N and K are counting numbers. Let us assume we

: 10 . , . i N
have the following: - T . : a
| p .5 .
q K °

. e * ', L. '4:"‘ lo
Therefore, " .. ."qge+N = p- 10

' . 105
wd ~ ¥ e B

Now since" p eand q are relatively prime, - q does not divide.' P, and
must therefore ditide lOK. But the only possibie factors of lOK. are
numbers '_t.ha‘t"are powers of 2 or 5. Thug we may contlude thet the rational



3

sumher E- . ean be: written as a fraction with denominator ‘that is & power of .

10 1f and only if the denominator .q can be expressed in the form
Q= 211: 5 m and .n whole \umbers.
' Class Exercises T

.

. r
- .

1;1. . Give the next five digits in each of the following decimal expressions.

We have seen that every rational number can be written as a repeating

decimal. A related question is whether GVery repeating decimal names a -

- rational number.. Certainly, there is no problem if the detimel expansion

"terminates (repeats zéros ). . For example°

- ¢ . R . 1

For decimals that ‘have sequences of repeating digits, not all zero, other
;:;"' '
One method for expressing a repeating decimal in fraction form uses

]

methods are needed.

, inating decimal thereby producing a terminating decimal that can.easily be

handled. This manipulative "trickf is illustrated in the examples that

" follow. .

191

(

PR

-

" (a) .27'? vee 0 . (e) 11331331 cee S
(v): 155515 ... ' (a) .121313 eee ' Lo
2. Which of the following are true statements? |
a) 3T ... = 3737 .. " _
(b) -e37373. ... < .37‘5‘7‘\,“ L . N o
() 3T wee = 3TBT e o~ 4
'-:(d) 37T e > W3TTITT eue o I K"
. 3, Using the notation of this section, express each ‘of the following in
decimal form. ' ° - . ’ o T . '
& _ 2w L 2
BON : (b) 5 & (e 55 _(d). 5
h;' Which of the following fractions can be expressed as "terminating"'
) decimals? , ‘ ." : .
_ 7 11 101 93
RROR- - (v) B - .__(c) 3% (@ f?@

»
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'i'- ’ . o ; Leﬁ- ' N.? -h5§5E§ LA

L . EE

First multiply N by 100, and then subtract N from the product.

) 100 N = u5;h5£5 e
v, " B - - N= oh5E5- xx ,
’ - . ) ) 99 N = h5o°°_®_o&or

L9 N-=b5

N = _ . : .
.99 . Cos -
. c ' ’ . . . R A . - . .‘_‘ .
1 . - Note that multiplying N by 100’.has 7L; effect of aligning the repeating '\_'

sequences of the decimals in N and 100 N so that they can ‘be subtracted
L to give zero in each case. The example shows that

A8 anogher example, let -
o N = 123183 ..oo : |

First multiply:by. 1000,,-énd'then 5u6£r§ct'as before. This gives‘a new
, decimal where the repeating séquences are zeros. Do yjou see why 1000 wasl

chosen for the multiplier here?

1000 N 5 123.123T53 ... ‘ o v
' .. 999 N =123
S e
. N =355
- .
333 oL

¢ ' : T4
" Notice that the repeating zeros found by subtraction have not been-written in -
‘this solution. From the example we see that '

M
333 o '

Finally consider N = 2.h75653'...

¢

.123123 cos =

© 100 N = 247.565656 ...
-N=_ 24756586 ... ’
o 99 N'= 245.09
99 .

) N ;?10
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. . ’ . ’ . ﬁ.

This can also be written as 232%% , which is clearly a rationsal nﬂhber.

- That is, we have shown that 2. 475 ++. is the name of a rational number. s -
~ “The method Jjust described is found in many junior high school mathematics

. texts. While-appearing pléhsible_at £irst glance; a closer study should

P

" revéal that a very fundamental assumption underlies the technigue. Indeed,
can we really mﬁltiply and subfract‘"infinitef decimals in this manner at
all? We would like to say (actuallyﬁwe assume ) the -answer is yes.
Other methods aré;available for expressing repeéting'décimals in-fraction
> form. They too assume certainuprdpeéties'regarding computing_with'"infinite"
‘decimals. One involves the use of decimal forms of unit fractions with |

denominatbrs one less than successive powers of ten. For exampleé: .

1 . o
= ,1111 ... v
. « g
YL - 010101 . .
) N ) . 99 L] ) LR ] )
l — »
. . ' —— = ,001001001 ... . 4
N 999 _ ] » .

.1 —
== = ,00010001 ....

9999 z

The pattern in these decimals should be apparent.

To write .U5L5 ... as a fraction we proceed as Follows?

<4

Ask5 L. = b5(.0101 ... )
2w
c s ) .
. " 99 ~ : L
-2 7 '
11

t

The technique will work for any number of digits in the. repesting sequence
of the decimal. ZFor example: - .

. —
.123123 ... = 123 (.001001 ...)

» , / #
= 123 .

123

e : 999
k1

™ -

L
999 - -

This method treats repeating de€cimals essentially as infinite geometric

series. This, of course, is exactly what they are, "

Ashs L., = L P . N

~
v

1007 100% 100
123133 ... = 223, 123, 13
, 1000 © 1000% 10003
212 '

Y]

.
%
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: Class Exerciges . S <o .

The examples- of this section suggest the.following copclusion that we -.:

shall accept as true.

L

.

Every ‘rational number can be expressed as
a repeating decimal and every repeating
"decimal namegs & retionsl number.

- »

c .

.js. Write the following products as repeating decimi;s 1If N = .2929

[

(e) 20 - - . Ae).2W
(b) 100N @) 1§
‘6. Write the following differences as ‘repeating decimals if A= .'225'2'
| ad B = .333.. e L o
. (8) B-A o -(b) 10A - B, .' ‘.
T Express each of the f'ollowing as a rational number in fractional form.
" (a) .2TF ... '. - (b) .135135 eer S
_ o o [ -
8. (a.) Express each of the following as a (raction. -
‘ ° . 999 . ’ » h999 e 0 -

(o) On thk basis of the results found in part (a), {8 1t true that
' 1995 ... = 1.000 ..." > °

.
D

~ and o ~
A .t - — o
- ° h999 see = 5000 e ? r ‘.\
(e) Does every terminatink decimal have a sécond correeponding decimal
Y ~farm that is non-teminating? e L -
< . . o " ) .o
I 3 L] " ' “ ' “ B
. Aj . .
& » .
9 3 Irrational Numbers ¢, . B ’ - . o
In our*discussion of the p.ositive rational numbers ve noted that they
could be defined as the .,olutions to equatipns of the form ,“ )
T ! S < :
bx =8 . . o
where & and b are counting numbers._ Thus  °
. [’ -

2x = 6, “5x = 9, Tx = 4
all Feve solutions that are ppsit_._ive rational numbers.
Let us turn our attention to anothe.r-form of e;uation. What is the
nature ef the solutions to equations of the form

| 6

212
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where k is a countin'g number? - < i
. What velues of . x . make the sentences _ . ’
2 : .2 ..
_ X =2, . =5, X = 7
_' true? With these. quéstions we open up an’ entirely new area of investigation. '
'Can xa,. 2 be solved with a rational number? That is, is there o
rational number % such that . “ : o
e : . _ a.2 - R _ ot
(g)\ = 2 .1 . - o -

‘ . . N . ) . N . N
‘Before &nswering this question, let: _ us. consider some appropriate
remarks ‘from number theory. . \ . - ,

R
.

Let 'p be awhole number. The number 2p- is then'an even number.

"'Likewise » 1ts square. (2;p’)2 = 1_+p2-. is an even numbe:_:.' For any whole number

" q, 2q + 1 .1s an 0dd number. Similarly, its square,

.
»

(2q+1) .—..~lt‘§e+ltq+1

'-.is an oddL pumber. Thus;-we have established the properties that:

LR}

an equivalent fraction % (s and b relatively pr?lme) elveys exists.

P 4

(1) If a number is even, then the’ square of the number is even.
(2) 1If a number is odd, then the square of the numbea is odd.

Likewise, we can establish two additional properties' _ IR

(3) If the square of a number is odd (not even), then the number ig
odd (not even). )

(4) 1If the square of 8 number is even (not odd), then the number is

" even (not odd). _ - B T

(Those readers familiar with logic will note that the last two prqpertiest

a;;e the contrapositives- of the firat twg and hence must necessarily be true. )

We will now use these four properties to invéstigate the n&gture of the
solution to*the equation x2 =2, . . ”

. . - . . . ’ ]
"¢ let us sssume that x2 = 2 hes the rational number %_-a‘s a.solutdon.

a & .
Fﬁrther, let us asgume that 5 is in reduced form, *where a and b =®re

relatively prime. This occurs when the greatest common factor of a and

‘FP_ 1s 1. Invother words, a and b have no factors in common other than
" 1. If a solution in the form £ 1s found for the eguation £ = 2,‘ then

a

-

b 2

. ,Thus, assuming that x2 2 has the solution x = 8 we get,

C 213
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" this - in mind we may also write a

A

«

We see that a2

« -

a2 em "
G =2
_ = 2
82 = 2°
2 2 ' 2
,or @ar

"~ is even, for a F 2b

is of the form 2n.

~t

property (h) Just mentioned 'this means thet a 1is even also..

~

However, if b2

From our assggption that x2

is even,

Since a 1is even, we may write

.2

:Tq;s'leads-us to the conclusion that

2

= 2b as .
_ % .
(2e) = @7
hc = 2b2‘
oy = b2
s‘ince'_ec2

b is even.

a=-2c, C

a -counting number.

is even,

-

—Vé “has the solubtion

b
no factors in common), we are forced to conclude that both a _and b are

bef must be even.

(a and b having ‘

With

even.ﬁ But this is impossible, since for a8 ‘and b to be'even, both must

‘have the common factor 2.

Thus, e can only conciude that our assumptiOn

wvas false; the solution to_ xa

is not a rational number.

" We heed«a ‘number other ﬁhan those in the set of rational numbers for a

= 2 cannot,?e written in the’ fonm b -and

numbgr V2 hés the property that
A2 2

Com o Ry

&hé?numbe{’

as follows.

V2 1is an exsmple of an irrational number.

f3,°

2
X

= 3,

= (-@)2 =

5,
whicﬁ\youamay rectgnize as solutions to

=5,

= {/3)? =

(From our study of negative numbers, we- see tliat

x> = 2 since (*V2) * (~/2)

v - -
L

2.)
i

.x2'=7,

2.

©

n

- .s6lution tb x2 = 2. We agree to write one solution as /2 such thax "the

From.»-'

f

“Yy2 1is also a solution to -

-

LYR

1

For example, to make a rastional number approximation to '/5,

<

Others are

BN

While these are irrastional numbers,. we can meke rational approki@ations to
them. . -

¢

we proceed

™

Ty,
hoi
.-;E
SR
- e

a i



}._1.1+1

.hlh

<

<

B2 o
2 < 15 ' RN '
- since (1.4)%'= 1.96 ana (1.5)° = 2.5
¥ < 1k | S A

sinqe-(.l.h_»l)_a = 1.9881 and (1.&_21‘2_ =

V2 < 1.5 . S

'Continuing this process we can approximate the ,value of the irrational number

Y2 between two rational numbers to the nearest ten-millionth, ‘as

. rSinc-e (1 1+11+2135)

to’ f_

1. l+11+2135 < 2 < 1 1+l,1+2136 e .
= 1, 9999§982358225, ,

we have a rather good approximation -

Pictorially, ‘we can. represent this approximating process ‘on the ratﬁnal

" numberline by enlarging sections Buccessively, as needed Jo shoy the finer

subdivisiops. T,

.
k]

"Rational ’ -
Number_,-“'—-'" —
Libe - - .
- Ve . N
/7
B /
N V4 . .
. Sa
_ Sl 1.0 1.9 2.0 N
» o o /’
. .\\ #
\
. A =~ -
v N bJ J R .
1.|u 1.b2 1.hh 1,46 1, 38 150
1.41 _ .l.h3. 1.45 1.47 1'h9

.

“We note at this poiny that while V2 is an-irrational number, 1t does
' carrespond to a particulyr point on the number line if we think of the line

as a continuous set of points with no geps.

This is readily 1llustrated

" using the Pythagorean'property. {
v -
- } + + + —ay-
-2 -1 ' 2 3 h
_ | .

215
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S o I o .
i Apparenﬂl there are points on the line that do not correspond to -
_ retional numbers. This is indeed’ tr_ue.' In fact there are infinitely meny '
points on the number line that cannot be named with rational numbers. E{ich :

corresponds to an irrational number. - Y . N

A
-

. . . ’ - .' N ’ N - ‘.‘ .
7+ - (Class Exercises ’ o . .
'- . - ,‘ . L ) f ‘_/

9, Every counting fiumber n ig-€ither even o} odd. "If n-is even,

. we mey find a whole number P, such that » | , ,';.»
. : " n=2p. - ' L
. RN JIf n” is/odd we may find a whole number q such that e
T - : ) : =2q+1 - Co .\:
- (¢) For each n listed in the set 2? 6, 18, k8 ), . - o
) , < find .an approprj,ate Ps . o ' ‘ . \ -
: . (b). For esch n 1isted in the set ( 3, 7, 337,.5'9 ), e . -
find an appropriate q. : 3 ) " SRR 3

-10. | By the method of squaring shown 1n the text, ver that
£ 1.732 <. 3 < 1.733 ; . o

& - ) .
] L - ) o 3
. < ' .

" In the SMSG Introduction to Secondary School Mathematics, Volume 2,

- there appears a proof that the solution to x2_ 2 1s'not rational which is "
" based upon the possible cases, of -oddness and evenness for a and b, namely,
1) & even, b even; - (2) a even, b o044; (3). a ‘odd, } evyy,/ang '

a-ly
,(¥) 8 odd, b odd. Extended Multiplicetion Table .-

Another interesting proof , - '~ Base Three 5
may be shown with base three xlolsl2lwln /.3 20l 37 220
numerels. Base three numerals o 1o '
- end only in the digits 0, 1, St . .
' /
~or 2. If they end in O, / s
 their squeres end in 00, If ¥ 2 " a i .
~_ they end in 1,‘.their squares /0 00|
¢ end in 1. I{‘ they end in 2, L /N , /27 .
. \ ) 4+ —— /
* . their squares end in "1, Hence y7 22/ . /
- the squares “of any gumber v |20 "ol
) (except Q) written in base three 2/ - . -. PY 4
edds in 00 .or 1. The extended 2
. - . | 2 ~ 2001
-~ multiplication table for base : -
L mavmimen e d [ | oo
\ 216
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e

: ;_a? must end in the digits 00.

L]

I~

[d

three illustrates this property. o o o

.As before, we assume that x° = 2 has a-solution x = Z (e =nd b
}ﬁﬂatively prime) and therefore a2 = 2b2. First, consider the case when

the base three numeral for b2 ends in 1. ann a2 2b2 we. see that

the base th:ee_numere%_for a?f must end in 2.

. o .|Za2_='2b2=2(_'__1),=___2

Jn ) . . . >

- But thig is impossible since no squares have-base three numerals ending in
‘the digit 2. Hence the assuhption that the numeral for b2 ends in 1 1is

in the digits 00. This time because a® Qb? we see that the numeral for
- - "'6
o 2 2 o

o = 2v% =2(__00)=__o00.

R

Now if the numeral for bE ends in 00, the numeral for b~ ends in 0. A .

Likewise, the numeral for 32 ends in 00 ‘#md hénce the ‘numeral for a
ends in 0. , But every base three numeral ending in O is divisible by
three (lothree)b. Hence.® and 8 both are divisible by three,r they have -
a common factor. However, this is & contradiction since part of our origlnal
assumption was that a and b . are relatively prime\, '

. Our only concluBion cean be that our originel assumption that: x? =2
has the solution x = % (a and b relag}xely prime) is not true. The

solution to x2 2 is not_a rational nugber.

"In this éectien ve have,shown that x2 = 2 cahnot be'solved by.a” , ..
rational number. We gave one solution the name /f and called it an irrad
- tional number. (Rec@Il a seco_d_solution to the same equation is /— which

" 1s also irrational.) Other similar se€ntences have irrational numbers such

$ .
"as ¥3, Y5, and /7 for solutions. There are many other types of drratidnal

s numbers, One very familiar irrational number is =« . Hhen we use 22 or

T,
3.14 for = ,Ain our computations, we aré only using rational number approx-

‘imations to the irrational number =. Still other examples of irrstioral

nunbers are given here.*
* .

e LS
1

ony -, 2+ V3, 43,0 o | (2)°
In the next section we will learwm more about these numbers that are not
rational, ) - . ) -

-

*

n

S«
<

-

v .
false, We €onsider the only other possible case: the numeral for b2 ends

/

K

. ‘L‘ﬁ
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9. ﬁ  Real Numbers _ . - : T r

We ha:ve learned that various kinds of questions may be asked with

. counting numhers. Many of these ta.ke the - form of open number sentences ‘such
.-.as 5% = 75 that can be solved with counting numbers. Othe?rs, such as

‘7

3x = 2 ore snsvered with positive rationsl numbers. Still athers, 1like

2 = 3, can be answered only with irratioral numbers. »

The seventh greder should be familiar. with the. counti‘hg numbers and
the positive rational numbers. In the eighth grade he will learn about
the irrational numbers and will study negative as well .as positive numbers.
Attention will be ‘placed upon these numbers- and their properties and how
they develop into the set gf real numbers. S e

l,'-

~

L 2 Ve . ) . & - N

In the SMSG text Mathematics for Junior High School, Vojume II, &

.

- chapter 1is devoted to the real number system. We will give here some of

the key ‘ideas presented in the chapter not because they\belong.in the
seventh grade, but because the seventh grade teacher should have this -

" background. One of.the primary ob.jectives of the :)unior high school -

methematlics progrém is to show students the developing number system from

_the basic counting numbers to the real number system. Granted, this can - - |
} -only ‘be done informally at this level. Yet! it is essential that students

begin to pee the relation between the completeness of the real numbers and
the continuity of points on the reai number line.‘

We approach our study.of the real numbers through the use of decimals.
Seventh grsde youngsters are often hasty to assume that all decims.}. repre-

;sentations are hames of rational numbers. Such, of c_/ourse , 18 not the case,

We need to explore the set of decimal expansions that do not repeat; that
is, that are not periodic. 7

: ‘218 _.
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. We have already encountered an exampl! of an Prrationsl number in an
earlier section when we discussed v2. Although V2 is a bona-fide number,
it has a decimal- exoansion that. is non-periodic. How. do we Know that the
decImal expansion for 2 does not repeat? It has an infinite number of
digits," we could - never hope to visually check to see that it has no repeating
§ ~ .sequences!" Recall that we exhibited. a, method: for -representing every repeating,
decimal in fractional form -end concluded that all repeating decimals named
R rational numbers. .Now V2 cannot be expressed in'fractiqna..l form as we
. " have already 'shown. .Hence, it cannot be- expressed as a ,repeating \iecimal
_That [t8, the decimal expension for V2 does not repeat; it does n t term-
inate”, Indeed this is what distinguishes 1t from the class of numbeks that
ve have been discussing thus far.

ad

————

We now can define rational and irrational

——

numbers in terms of their decimal representations.

c e
A rational nGmber ’is any number that. has a periodic 'I
P (repeating) decimal representation.

o An;irrational number is ‘any number that las a non- | o
s ' periodic (non-repeating) decimal representatio'n.

The system composgd of both the rational and irrational numbers is the . s\ e
. real number system. Every real number is either rational or irrational.
- . If the decimal representation is periodic, the number is a r_ational number;
: otherwise.L the number is an irrational number. . '
ach of the following is the name of a real number. Can you tell w‘hich ' )
/«  ones represent rational numbefs? I "

.
- -

\

; o b. 0.2578 '
I o c. _0.37205 - _
* 3. 0.10L1011I011110 ... E “
e. 0.213213321333 ...

The first three decifnals on the list are names for rational wnumbers H

(Recall that a decimal such as can be

0. 2578

~but this pattern does not consist of a set of repeating digits.

- decimals, however, are representations of real numbere.

“they are periodic decimals.
thought of as repeating Zeros thereafter ) The last two ®re obviously not
periodic and therefore represent irrational numbers. Both have a pattern .
to show you how to continue ,to write additional numeral,.s‘ in the sequence N '

All five,

s

* . 219 .
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'; "« Adetailed study of the decimal representation of the set &f real numbers,
together with the properties of the real number system, does not normally .

Lo occur until the.eighth grade course. It has been included here in order to
. provide you with a brief overview‘pf the development of our number systel.
\The set of real numbérs is now sald to be comglete. Every real’ number ) .
., corresponds to a npint on the number line, and every-point on the number line

) corresponds to & real number. : : .
. One should not infer from the above illustrations that all irrational .
SRS . numbers have decimal representations which, yhile non-repeating, do exhibit

. patterns. The digits in the décimal- expansion for /T have no pattern.
- . . ’ " »

. - V2 = 1&1&2135 /

Co» .

*(‘r\\\\ Likewise, the decimel expansion for = at no- point exhibits anything other
- . than rendom ordering of dig!ts. '

. o . x = 3014159 2653& 89793 #4846 26&33 88279 ...

It 1s with respect to this latter point that the set. of rétional numbers
differs from the set of real numbers. For each rational number there corres;
ponds & point on the number line,.but there are points on the numbqr line =
that do'not correspond to any rational number. For example,' /2 1s not a
rational number, yet can be located on the humber line. - '

_ The set of real numbeys, as well @s the sets of rational and irrational
., numbers, are said to be dense. That is, between apy two distinct real
. numbers there ie always another real number. Indeed between any two real
nmmbers there are infinitely many more reel numbers. For example, consider

the real numbers.

a. 2.34534536% ves  (ratjonel)

13 . a )
5, b. 2.345534555 .. (irrational) A
- ‘ Toll cate a real number betveen‘these two we need to have in the fourth

decimal place a digit between: 3 and 3, that is, b, There;fter, by our
pattern, we can locate elther a rationkl or en irrationsl number between

A

the two- given numbers. H%re is an example of each:

: '. a. 23&53 453L5 ... ‘ ‘ ‘
rational .: 2.3454 5% ... R ' ’
irrational ;  2.345k 5nu5uuu . ‘

»

Can you find others? .

T

- ¢

o A \

b. 2%%3%%.” o B ;

*

o et

D,



Class Exercises

»

"7 ” ll._ Classif'y each of th& following as rational or irrational.

oL (a) 08TH L. e (a) 3.m16 | ¢ SN
o ), 0,070T707TT o T (e) VB T
fc) - 0T112111221111222 ..., - (£) 4.2500 .0 i ove , R

1% Write the next nine digits in the decimal expansion of the real numbers
’ given in parts (a), (b), and: (c) of the preceding exercise. '

e 13, Write a decimal for a ratfonal number vetween 2.3843B4 ... .and

._.2385'8'5' e _ .
o lh Write a decimal for an irre}ionel numb_er between O 72514725’; and
LY 0255 e S . \

-

+ . .'M \

5 Order the following real numbers from smallest to largest' 3h3hT ...,

7. L 172 .
3u3u3m coey ..314143'1?5 cees 343343334 ..., 35, 5 500 -

- . . !
.
.
. ny . B - PR
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9 5 Properties of the Rea.l Number System K e

We have presented, in Chapters 5-9, a development of the properties of -
number. syatems from the aet of counting numbers ’chrough the set of real num-
> bers. This material is norma.lly developed in far more detail than gliven here,
_ It 1s important

number system, to-

‘as part of the ‘mathematics program of grades T and 8

to have youngsters see the overall structure of.the r«
v .. . @&ether with the properties of the various subsets of e\get of real nimbers.
It is equally import.ant however, that opportunities be pro¥ided for practice

of computat ional skills at this grade level. Neilther of these aspects should

. ve neglected. P .
N »{n summary o:f; these last chapters we present here the propertiea of the .
te real number system. X . YL .
. - | -
’ . . . . :
ProEertx,}_. Closure . ..
S ' {a), Closure under Addition. The reelsnumper system is closed under -

.+ - the operation of addition. If“a and b are real numbers then

‘a +b 1is & real number. . R ' .

Clbsure iffder Subtraction. The real number system is closfed_ tinder °

e operation of subtraction (the inverse of addition) LIt -

. s @ R . .o
. .

~




‘o’
. ‘.

:

“(c) “Closure under M.xltiplicatioﬁ. The real number system is closed

. under the operation .of multiplica.tion. If a "and b are real
" numbers then a .+ b 1is a real number. . -
(d) .Closure under Division. The real number system is closed under
B 'the operation of division (the inverse of multiplication).
‘a2 end b are resl numbers then 8-+ b (when b £ o) is a
realnumber. . L

Y The operations' of addition, subtradtion, multiplication, and division -

on real numbers display the properties which we have already observed for

- rationals. These may be aummarized as follows° \/

Property 2. 'Cuté:tivity ,

. M . d Y

(a) If a and b are real numbers, then a+b=D+a.

(b) If a and b are real numberé, then a *b=b. 8.

Property 3. Associativity

(a) If &, b, and ¢ are redl numbers, then a + (b +c)
=(a+b)'+c.'-'- _ : . e
(b) If & b, and ¢ are real numbers, then (g.-b)-'c =a+(b-c).

- Property 4. Identities

-

. (a) If a is a real number, then a + 0 = 0 +a=a. <Zero is the

identity element for the operation of addition.' :
(b) If a-is a real number, then a + 1 =1 +.a=a. One is the
identity element for the operation of multiplication. 7

.
9 -

‘Property 5. Distributivity

If a, b, and c are real numbers, then a+(b + c) = (ab) + (a-c).
2 b b4

.Propertx 6. Inverses . )

(a) If a 1is a real number, there is & real number "a), called
the additive inverse.of a such that a + ("a) = O,

(b) If & isa real'mmiber. and a £ 0 there is a real number
b, " called the multiplicative inverse of a sucl that
a'b = 1.

.
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reg)/ number system is ordered. If a and b a:re different
real numbers. then eltter e & or &>b.

._,P.e_.l 8. M _ o
_The real number system 1s everywhere densé Between any two distincin
real numbers there 18 slways another real number. Consequently,
' between eny two real. numbers we £ind as many more real numbers as.
© e wish. In fact we easily see that: . (1) There is alvays a
"rational number be‘tween any two distinct real numbers, no matter
*  how close; (2) There 1is always an irrational number between any
B two distinct reml numbers, no matter how close.

- The nimth property of the eystem of real’ numbers is one which is not .

R sha.red by the rationals. -

] . . .
- s .

*-Property 9. Completeness _
' The .real number system is complete. Not only does a point on the
‘ pumbér line correspond to each real number, but cpnversely,

»
L]

. real number corresponds to each point on the number line.

Y .
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Anéwers to Class Exercises
1. (a) 27272 (b) 4125k (e) 33133 () 13131
2. a ' . ' R
3. (a) 0.333... . (). .010101 ...
* (b) 0.714285T14285 ... o (a) .1538461538L6 ...
[ 3 . .
b, v, d '
’ — . ' ®
5. (a) 2.92929 ... . (c).. 588 ...
_ | (b)) 29.2985 ... - (a) 7.0 ...
(. 6. .(a) .11T ... g "~ (b) 1.888 ...
9. (a) 1,3, 9, 24 . - - (v) 1,3,16, 29 '
10.  1.732 < 3 "< 1.733 ‘
) e < ()P < (1.133)°
- 2.99982h < 3 <. 3.003289
11. :(a) -rational . _ (@) *rational
(b) irrational (e) .rational
(e) irrational 7 (f) rationdl _ _
 _, ,._12.' (a) 185185185 (b) OTTTITOTTT ; (e) 111112222

13. - Answers will vafy: two possiblé answers are

14,  Answers will vary: _twé possible answers are

0.725450550 ... , 0.72548548854888 ...

5. %, _%-g- , 343363334 L., .333T .., L3U3UULL L.
: 172 ' ' |
550 ° S3UU3RE ...
2

f- t 22h -
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' Chapter Exercises

1.  Write the decimal expansion’for each of the following rational numbers'

@ w3 @ @ 55
. 2. Give the next five digits in each of the following decimal expansions
(a) 3B .. (b) .353553555 ... (c) .355355 .
3. Write a rationel number in fractional form for each'df the following: -
. (a) 0.2T3 ... (b) 0.432832 ... . (c) .6999 ...
k. Classify each of the following as either a rational or en irraticnal
| nﬁﬁber. ) | i .
(a) 5 (b)) (B)° () 3~ () § () 2-V2-
5. Repeat Exercise 4 for the following: o :
(a) .1717 ces (o) ATLTTLITTT ooe (c) L7117

(d) .171171117 ... (e) .17000 ...

6. Which of the‘following numbers is the 1argest?' Which is ‘the smallest?
o (a) b3 (), 4383 ... ~ (e)  .h3h334333 ...
(@) ..4343F ... (e) .h3yh3bhh ... > '

I 7... Write two decimals for (a) & rational number and (b) an irrational .
Do number’betveen 0.345385 ... and O.3h533h5333h5 o :
‘2 3 b 5 6
7 2P TTTTT
. Try to find a pattern that recurs in each of these representations

" 8. Write the decimal expansioné for

9. Repest Exercise 8 for the thirteenths from f; through ;5 . .
10. Between what two consecutive counting numbers are fhe following?
(a) - <3< (e). <B<
(©)- < 153 < (£) << -
(@) << (a) ___<im<___
(@ <V <__ (n) < /69 <




L 4
3

.11,

R

_SOl{re each equation, | .
“(a) 3x=91 (1) 31x =558 * .
Cm) &3 (3) hox = 98
'___\;(.c), hx = 96 ,(k-)'*jx ;<1231', :
“la) #x =1 (1) 8x° = 232
+ (e) Lx -7 (m) 1ix = 176
() x=T0. (n) ‘11x =175
(g) 8x-=.63'., (o) %% =13
L) Ren (5) =5

. . l - " '
Do Classify each solution as a counting xumbgr, & -rational number (not
ot '. a counting numgrr), or en irrational number. e '

!

.
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Ch;pter 10
NON-METRIC GEDMETRY I

f

More au@cmore of the basic concepts. of geometry are being ‘introduced at
the Jumﬂgr gh 1evel or even earlier. Thig is not to say geometry is belng .

treated 4s a Ngductive system in grade seven but that these students are

-learning'many of the fundamentel ideas of geometry. Several reasons ‘exist

‘for this ¥ncreasing emphasis on geometry. Many topics in mathematics are _
. ‘being introduced earlier than previously was the case, geometry is one of" them.

The demise of solid geometry as a full course in its own right and the in-
clusion of mach of its content ~in the tenth grade geometry courae has made it
difficult to introduce all the three-dimensional concepts and study them in
any depth in the time allo%ted.l The study of geometry introduces a new element
into the Jjunior high school years which'in the past have been primarily con-
cerned with arithmetic. Junior high school students enjoy geometry and easily
learn many of the concepts which have a "pay-off" in the future.

Seventh and eighth grade books today, including th&.SMSG Mathemgtics for
Junior High School, Volumes I and II, include many topics usually not encouq:

tered until grade ten. They study the relationships between points, lines,
and planes 1n,£pace, angles, trianglea, and polygons; parallels and parallel-

.ograms; basic ideas of measure and congruence; as well as properties of sollds.

This ohapter, and the next, will treat many of those aspects o?\geometry
ch do not depend upon the concept of distaﬂce or measurement. Chapters 12
and 13 will introduce the idea of measure and use 1t to enlarge the study of

geometry.

You are aware that'parts of geometry &re not concerned with distance or.

.measure. This aspect of geometry is called non-metric because of its "no-
- measure” property. An examination'of non-metric properties considers points,”
" lines, planes, geometricai figures, and shapes in space. 'Such a study enables -

-

us to aeccomplish the following. .

1) to introduce geometric ideas and ways of thought;

2) +to develop more familiarity with the terminology and notation of

~

seta" and geometry,'

,

3) to encourage precision of larguage and thought

4) to develop spatial perception.

.

’ . . 2 27 . l, :)-

-

-



10.1 Sketchigg

In order to discuss and "draw pictures" of what we will be studying, let
us - examine a few techniques of representing surfaces and shapes.
Representing points gives us little difficulty and representing“linéa
_beéomés bothersome .only when we try to look at them in perspective. Solid
. figures, in general, are nof_difficult to sketch with a little practice. r
. Suppose we start by drawing a box. We may consider-/the following rec- .
tangle ABCD as a representation of a box. This is the view from "head on."

eSS

' ’ N - A . " ’ . ’ B N

. '. - /‘\ ) ] .
If we think of rotating the' box, or equivalently, moving to the right and
standing up 80 that we look down at an angle at one corner of the box, the

sketch looks somewhat like this:

-

A Y

Furthef, if we think of this shape as made of toothpicks, tinkertoys;_or rods
instead of being solid we would see the "back edges" and the sketch would
resemble this: . . s . .

228
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Since we now seem to have created some sort of .an optical illusion, where

R & 4 ; 0ot clearnwhich is front or which is back, we make the "back lines “or
A hi ' nea d.otted %o differentiate’ then‘ from the others.

-~ \-‘".: ° I -
¥ D ] |
. B 1
N |
. ’l-—_ ---------- r
» P4 -
’
K4
5 . © A“
l-. . . ../'
q v g Y
O A e s
Class Exercises \
1. zketch a cube (all, faces are squares). Show hidden lines as dotted.
2. . Using thegfigure above: - ' !
1 . . . . :
(a) - Sketeh only the top of the box.
- (b) Sketch the bottom and left side.
-(c) Sketch the top and right side.
(4) Sketch the bottom and both sides. \
3. Below are some common sblid figures with their names.' Sketch them,
" without tracing, on a larger scale. '

[
l v
; |
| 1 1 .
] [ I
i S
I"L\\\
tetrahedron right'briangular right hexagonal right eircular

Prism : prism cone

/"'-‘\

v

right circular cylinder -




’ L3 C : B
.. three intersecting planes

. 10.2 Folmts- - . - \ S R L :
e . Let us return to our discussion of points, lines; ﬁl,nnés,,nnd' spﬁce'and o
NTEE '_conaider some of their properties and relationships. As mentioned before,.we

| T will 1imdt ourselves to those aspects ‘of the problem which do not. concern

v "measurgment. ‘ fL
" """ Vnet do we mean in mathematics when we use the word point? This is one
"of the words ox t.erms of mathematics wirich we use to name- an abstract com:epé

or ided. We 46 not try to define a point but rather discuss its. propertief\
'.a,pd characteristics. We then use this word to define other terms.

[

Note: " The problem of definition in mathematics is not .solved by a dictionary
' approach. When we attempt to define any wnrd, we must use other wo;%ds
These then also need definition, which requires still more words. In
attempting to define all words in ‘this manner we ultimitely will héve
to use a word that qe have previously defined. This then gives us what
; we call a circular definition; 1i.e., defining word A in terms.of
word B and word B 1in terms of word .A. Such circular definitions
: are of no valle, for*unless we 'i:;'m get outside the circle by somewhere
S . _pointing“tof the actual gbject, we are unable to d°. more than usé orie
. " '# word for another,/ Tmagine yourpelf with & _French dictionary, no
- . knowledge of tn'e :‘French language, anl a French word for which you wish
. '~ ©  .the meaning. Finding this word in-the French dictionary only gives you
R other Frenéh words which in turn are defined. 1in French words, and &b on.
- / ~ . For this reason, in mathematics we agree to accept some words as
, ""]?rimitive or "undefined words" and then use these to frame the defi-
/ : nititions of other words. \Students find it interesting to take a |
wor'd, find it.s definition in the dictionai'y and contirue looking up th&ﬂ




A\l

L)
Key words until they find the original word used. Examples are easy to
find. In one dictionary mint is given as a “narrowly localized place

SR ' ng & precisely indicated position.” The key word in this definition,
\ sitién, is given as "the point or area occupied by a Pbhysical ob,ject L

_ The same dictionary defines 1 ength in terms of dimension, dimension in
"N terms of extension, extension as the act of extending, and extend. as
. ™o stretch.out to. fullest length." '

Because of this problem of definition we will not attempt to define the
t'erins point, line, plane, or space. We will, however, state fomally some. .
. axloms, here called properties, which will. describe these geometrical ob.jects.
Uaing these properties" or a.:d.oms, it will be possible to learn more a‘nout
points, l'ines, and planes. Recall that in Chapter lyou did not know what

' of the lements and. operations "really" were, but from their definitions as

[

_the circular definition mentioned earlier, for we will use the term point in

*. sharp pencil, by a dot on a paper or chalkboard, or the period at the end of

o given in taples mach -information about their behavior was deduced.

- A pc_:int xqight be described as a location in space._ But this leads us, to

our definition of space. The idea of & point is suggested by the tip of a

a sentence. All these are merely representations of points, and not points
themselves. The smaller tl.le-,dot or period, or .the sharper_the p'encil,' the

‘better ‘the representation.’ We usually represent points by dots and label th

with capital letters.
. AN .

10.3 Sets of Points

-

We may think of gpace-as the set of all points and examine certain special

subsets of space;, i.e., sets of points which are. the elements of _geometry we

.- wish to examine. One of the first of these is a line. By line we mean a set

of points with certain properties. We will use the word "line" to mean.
"straight line." Just as a point was represented by the tip of a pencil, a
line is rbpresented. by the edge "of a ruler, a string stretched ts.qt ‘between
two points, or the "line of sight" of the surveyor. '

. Although at t,imes we -refer to a portion of a line, we must be careful to
make it clear whether we mean the entire line or not. Later we will Introduce
some notation to help clarify this situation. Again,-as with points, our marks
on paper, chalkboard, and the like) will be only.representations of lines. We

! ,"will often label lines with lowez{case script letters as line £ ,(wv 5 or nv .




»

- One of the simplest and most basic properties of space ie represented by
"the unigueness of a line drawn through two pointe on the chalkboard, or the
fact that two pieces of string stretched between two points follow the same *
path (as far as phmsically possible) Unidue, as used-here, means "exactly

. ‘one. : , _ _ | " | ' -
Property 1: Through any ﬁwo different points in
space there is exactly one line.

. Another method of lebeling.or naming lines is dependent upon this
:'property. If A and B are any two distinct points both on a line, or if
' a.lire passes through the: ppints A _and B, then we use the symbol AB to
- denote such a line.

“ _ T il
7 . 2 » . -
If thrée or more points are contained iﬁ &he ahme line, then we say
such points are collinear. Thus, points A, B, and C .on the line below

_ are collinear._ . ‘ .

“ ~

When more than two points on & line are named, we have many ways for naming
‘h“b-‘.

the line. We might neme the line sbove as AB, AC, BC, W and CB. '

. : . ’.

- -
o N

Clags Exercises o R T :
~ . ;
4 L, With two points only one line is "determined," while three non-¢allinear
- - points determine three lines. Four points, no three of which are col-

1*linear, determine how many lines®: Five points? Can you discover a .,
formula which will give fhe number of lines determined by n points,

s " no three of which are collinear? Complete the following table: 4
. - N ’ .
Number  Number :

of " of ' \\
Points Lines . . T,
g 1
3 .

(o] [o) \S)] =y (UN} |V}

Three points-three lines
} . ,~ .
' 23201

ar
‘

¢

Teet



. 1
-Andther basjc concept of geometry is tnat of & plggg. Like the line, this
is also a set of points in space with certain properties. Intuitively, "we
_ think of a plane as having the property we have in mind when we use'penns like
. flat, level, even, and smooth. We will'attempt to make this "flatygse" more
--precise a little later. We think of the surface of the chalkboard or our
. paper as rdpresenting a plane surface. If we wish to represent a plang,in'
perspective: with a sketeh, we draw only a .portion, as. with a line. We ihdicate
. a-plane by ._a figure like that below.and label it with a lower case letter as
shown. Remember,'although the picyure appears to be bounded, the plane it

represents continues fon ihdefinitely in the directions indicated. - L
’. - B
A / :‘r—J:f”””/,'ff' -

- 9

K R . / : U ) o :
- The flatness of the plane and the straightness of a line suggest that if two .

points, A "and B, of a linerare in plane m, thén every point of the line

'phrough A and B lies in the plane. We may state this formally as a second

s

. basic property of space as follows:

-.Propertx 2: If a line contains two different Points of
: a plane, then the line lies in the plane.

This property may be stated a variety of ways. We may say that the plane
contains the line, or that every point of the line is a point qf the plane, or
that the line is a subset of the plane.

N .

Recalling Property «1, that exactly one line is determined by two points,
we may wonder about points and planes. Given two points,.hqw many planes are .
determiined? Since «these two points will determine a unique line we are also -
:'agking how«many planes . contain a sin%}e line.’ If we think of the hinges of a
door ds the two points, and the different positions of the door as represent-
{ing different planes, we see that® any number of planes may pass through’ two

. poinfs or equivalently through one line. _
. . o L} .

33
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. Just as there 1s only 'oz;é\position for the door when it is closed, 1.e.,
the two hinges and the latch determine one position, ‘Yhree points will deter- _
mine one plane. COnsidering the same twe points A\ and’ B with a third "o -

point C not on AB,*‘t‘hen onl‘_one plane, 1abe1ed P 1n the figure below, g

=oontains alf three points. . . - T

o

K4 o L]

This "13 another of our basic’properties..alxd we etate;'it formally.

v

Property 3: Any three points not in the same straight line
are in exactly.one plane, . .

e O 1y . @ ..

\ ¥

. . [ _ _
_We see from this property that three points not in th® same straight line can

be used to name a plane sinf:e they locate exactly one plane. ‘the figure
plane p may be hamed plane ABC, . -

2

This propert\ also explains the reason for the stability of such things -

(t as tripods and three-legged stpols. You mpy illustrate this by demonstrating

.. the ease of supporting a book (plane) with - thre?fingers (points) as contrasted

‘with two fingers (points) 5

S
-
e



,...C.Iass Ebtercises R o . @f

5. How manar plapes are determined by the ends of thsg fou\i" legs of a table?
. o Does this help‘explain why ‘the legs of a table musb be the correct. leng‘l{@

:, . ,'v-in order to. sit steaéLy whereaa a tr:.pod always sits steady? Must the legs
o of a t'able always be* the seme length‘? A _ F )
TU10.4 0 y qtions ‘of l.inee gnd Planes . o ) . o

ﬂiﬁ S ' Al
ks elements of geometry are sets of points, we have all the (pre-

- wiously" defined properties of sets at our disposal. In the chapter on -se-ts,
L the term 1nterseqtion was defined precisely, and we agre'“f that«whenever we

' used this word it .would have exactly the meaning given in the d fin‘ition. :
‘l‘his i$ what we do ﬁith all tebhnical wor,ds in mathematics, Once they have
been defined they: will elwavs have the same meaning and be used in the same

. »

way Sometimes, however, a technical word in mawhematics, carefully defined
in on.e way, may also be an e.veryday word used in a- sOmewhat ’different sense. ‘

- Such. a word is intersection. When used with sets s intersection means only one °

- thing, the set of- all elements common o two sets. This is.the meaning given

.

earlier and Wwill continue to be the meaning ‘of intersecti'bn of sets. From
- this definition we also developed the empty set " @,” which we defined to be
‘the set .w,i{c.h no.elements. . Thus, the intereection of two .disjoint sets.ls the

O

empty sét.
;' . " -In everydmr ustge we often speak of a street intersection" or "two-paths

e intersecting." le"I'his meaning is simllar to the "points in common" definitid®

gi\ten above s but in eVeryday usage 1f two streets do not meet we say they do
j:ntersect, rather then say Mtheir }ntersection is the empty set."
. (?eometry and. the language of sets developed ‘as two different -disciplines

- at two different timea. Thi.s helps explain the use of the same word in two .

d.ifferent ways, If we keép these two\uses of"'the word in mind, 'then a state- L

n‘t like t ollowi 8 -meﬁni ul. T : A
;ie & ns, ngf’ o .
R . o Ifvtwo lines do’not lptersect their intersection is SN
- D the -empty set. - . . , o .

S%

Al.though we will try to avoid stat ents of this type, and the meaning '
;-» sw.lll usua]bly be clear f;'om the. usage s t_ teacher should be awa,re of the_

.

diff.erence and a.lert to the possibilities of confusion on the part of the
studex}t .. 0-.. R : ,.(\ S | o

I EEA ) N

\.

s



. Two Eines TN - ‘.\"..:‘ ' I
' - .
‘What possibilities exist for two lipes in space? If they intersect '
- (by this -we mean ‘the intersection is not the empty set), they have at least .
a 'ogé)point in common. What if they have twor points in common? Then by - A

| . Property 1, they must have all points in. common, ‘or we say t‘hey are coincident.

Note: Two.lines whose intersection is .not the en_xpty_ set Jl_ie ‘i_‘n _th_e same
' plane.‘_ Why? The possible arrangemetrbs. of. tivo differént lines may

-

“ be described ’ih “Ehree cases.

~Cage l. ,L' and A intersect, ‘or- ,("ﬂ/é is the point P and not
the empty set.

e i o .l inté_rsecting'lin_e's B ot
KRR - Case 2. Z and, 4 do not imsersect and are in the same plane.
RS : - (jﬂ/é ¢) Such line__s are said to be parallel lines. o

A o ~ - . ] ; L A
T ¥ R

<@

14

« o g Case 3. ,Z and 4 do not intergeg and*are not in the same plane. )
’ R (Zn A= ¢) 'Such lines ghe said to e skew lines.

-

\ N . LI i P - -




“e.?A Line and a Plané a ~ -

) A little thought will reveal the three possible arrangements. that may
exist for a line and a plane in space. Property 2 tells us that if two or N

-'_:more points of a line are contained in'a plane, then all points are.so con= L

' gTwo Planes g AN

’ empty, 80 that‘we say the planes are parallel,qor the uﬂtersection is non-

RN

 to the plane. L T . O : "~ . \;

tained and the line lies completely ih the plane. Nothing, however, prevents '
a line and & plane from having one or no points in common.. In the former we

say the. line intersects the plane and in the latter we say the rine is parallel
=

2

»
-
-
.
s
’

If we consider two planes, ‘bhe possible relationship is that of coinci-

" .dence. Let us,confine our attention to two different planes, i.e.,-not

coincident, and ask ‘what possibilities exist. Either their intersection is

. . . .

empty. : ’, R
In the latter case oqr intuition and previous efforts at sketching prob-
ably led us to expect a line as the intersection. Can we ma'

more plausible by using our previously developed prOperties?~

8 conclusion

.
P L]
N

o :If A and B are distinct polnts, both contained in the intersection .\'
'_ of m and’ p, then by Property i they are contained in exactly one line,

say 2 o But since® A and E are both in plane m, Property 2 tells us
t
that line z is in m. .- . : ' . .



., The same reasoning puts ' k"inﬁblane P ‘M1 this geems to add weight
to our conjecture that the intersection is a line. Note, however, that we
‘have assumed the distinctness of the two points A and. ‘B. We have not J
really proved that the above conclusion is true but let us accept it . as another

'Y - basic property of space, Just as we did the previous three. v

?

: Property 4:. If the intersection of two different planes S .
_ " _ : is not empty, then the intersection is & line.
"' A ' < . V .
~ This property forces the mathematical concept of a plane to agree wlth-

our intuitive concept of plane. Without ?rbperty 4, we have no mathematical

Teason to rule out the possibility of two planes intersecting in a’ single

point._ This, of course, contradicts our intuitive notion of two planes
o .intersecting. B : - " !

«

Class Exercises ) ’ .

6. How pany examples of intersections of planes to give straight lines can o
you see in your immediate surroundings? The intersection of two walls? 1

» ' - A ceiling and a wall?, The edges of a desk? - ‘

N . Te Find some examples around you of intersecting lines and planes. oo

o . B oo » AN et

8." . Consider the line determined by a point on the light switch and a point ‘

on the pencil sharpener. es this line intersect anything inside the -
room? Outside the room? L. ‘) '

. 9. . Consider the‘plane determined by a point on the light switch; a polnt on
the pencil sharpener, and some third point in tne,roqm. Is 'a single .
plane determined? Where does this plane intersect the walls of the room?.

.~ VWhere does it intersect the ceiling? ‘Does it intersect the instructor?

~

Is anyone decapitated? - ’ ’ : _ ..

A3
ST . . .~
‘:‘ .
?

10.5 Segments and Unlons of Sets . \

We use the word "between n referring'to points located in certain ways.

How are paints arranged when we say t one point is between two others?
_With people seated.around a table it i » difficult to say who is between whom.

'twg( Brian and Nick, or both?

-

.

" Is Nick between Sue and Brian, or is Sue

i




. . . ) ) ’
- - . .

. - c)_nick :
.- . 8ee O) O Brian
vl .. ’
What about three palnts arranged éé shown? x\ ;-7 .
‘A B '
C

. Can we agree that any one of-the points is’ between the other two? In a sit-
', uation of this nature "between does ndt seem to apply. )
: If the points in qpestion are on 'the same, line”as A, B, C,” and D,

| s w _ |
then we have no difficul‘gy in“our use of the word between. We say that B 1is |
between A AAd C, (or A and D), C is between . B and. D (or A and
D) and'both B and C are between A and D. Thus, when we say one point .
is betweeh two others, we are implying that the points are collineer, ..
We may use the above idea when we wish to speak of a portion of a line.
" - » We call $he set of polnts conslsting of X and B and all points between
‘A and B, segment AB and write it as AB. Note the dlfference in notation
between AB (segment):ahd 75;'(liﬁe). . . UL
Ancther item we wish to recall from previous work is the union of two
sets, Remember that this is the set of &all elements belonging to at least one
of the two original sets. In the figure above the‘union of AB and BC 1is *
AC. This ‘concept is. usea in the following class exercises.




- -
.'\ ' Class Exercises | L . . ) ’
: - ’ R Y a .
' . 10. Examine lihe FS. : .
' \ . . ._ : ‘ A' L :' » - '-‘- v"
".‘ M . ) . v P . . Q . R S . "b/
- . 4 " ' . ' ’ .
" Nafe two '\seglnehts:~. 7
., . F ' N ' . . L
(a) whosé intersection is a point. - o .
e (‘n) whose ’iintersection is a segment . o .
" (c). whose union is a. segment.
. - (d) whose union is two segments..’ . , -
(e) whose intersection is empty. . .
11, How many segments are in the figure* in Exercise 107 -
4 : y A
o . . ) Py - 3
* 12, Simplify the following by referring to line 'AC.
. 4 - ey ~+ +— —
AT B c - R
* . (a) BBNE , . (e) ANEC. )
‘ (6) ACMNBG . () AU .
— —— ’ ~ -t — N v
(c) ABU EC . tg) ACN (AN EC), .. .
(@) BURE , (n) BN .
. ‘ .':; Y o — — — ' : . 5
13. DBraw two segments AB and CD eo that "ABM CD 1is empty but :
- ~ -ABM)CD is not empty: o .
. - ° - h.. . l
10.6 Sep_aratlon.a . N , . o,
A point on a line separates the line into two parts. Each part is called
a hakf-line. .Thus~, AB is separated into two half- lines by ‘the point C in
"the following diagram. Notice we have three subsets of the line, the two
half-lines and.the point of separation.
. T a . - . C B o -
' ] . : . ;‘. . - -
We speak Q“ the half-line containing A or the half line containing "Be e
.t © . A half-line togéther with its end-point is called a gx Thus, the union of
e point C with the half-line cori‘taining point B 1is a ray, written C‘ﬁ. .
Note the notation ‘used and contrast it with the notation used for line and
A - . . .
‘ \.1 o - + ) ’ ] '.r ho < : o ) ’
ERICT . A
'Full Text Provide Ic ) '\ * " o' -




i

”l_Line £ ~belongs to neither half -plane, but forms the boundary of each. Note

. . -~ .
. . S . ' - I : N — o . -~
. : . N .
. . .

1line segment;_ In the latter two cases order made no differénce. Thus, ‘A—B;
" and EE? both denote the same line, CD and BC name the same segment .
Order, however, is important when considering rays. 'Ai' and -BR do not ‘mean

the\same ray. ‘Thie first letter names the end-point while the second letter

n&mes some. other poilnt on the ray.. Ray ﬁﬁ starts at A and contains B;

ray BA ' starts at B and contains A, . .
A similar situation holds with a line in a plane. The line separates’ the

plane into two Hglg-planes.' In the following figure, line £ separates plane

m ) into the two half-planes containing- P and Q, respectively.

|
1
!

NS

—

that the line divides the plane into three subsétg, the two half-planes and 9

" the line itself. . -

Space is se?)arated into two ha‘gaces by a plane\.\_}iere again we say
that the plane belongs to neither half-space.

.

N

Class Exercises . , . . . e

lh. Draw a llne containing the: three points P, Q, and R, with R between

P and Q. Use the diagram to simplify the following. fa
. [ ) - Y " . '
a) "PQN ¢ e (a* RN ]
—— v -
(v) FRURS o e) PNRY. . S
(¢} FRURQ ' ‘ ;

-

15, If points A and B are in the same half space formed by plane ‘m in -
Space, what poss%bilities exist for ABNnz .

.
. ‘ .
. ) N
. ¢ . .
.
,
/

. 10.7 Conclusion . S e LN T o

- ’ . ] _ .
What maJor'zheas have we covereEFdn thig chapter? We have looked at
geometric elements as ldeas and seen that we do not, put p01nps, Lines, and

planés on the bdard but only representations of' such ideas. We havc seen that |
. . 'adl. _E?!) ] ,4' '*;5 D
. "y

-

.
- o . *
P ™ :

N



only some elements:of geometry .are defined, whereas some are,left undefined.
These we use as our building blocks to develop more complex ideas.

' We have seen how points, lines, and planes in- space are related. We have
discussed the intersections and unions of these various geometrical elements. .
i In the next chapter we will continue this approach’and use these basic
elements of point, Llne, and plane to develop other geometrical figures.

. ) . - . \ - . T
' “. Chapter, Exercises . “

1. Sketch two planes, m and m, that intersect im line 2.

2. Gilven two sets, one with eight elements and one with twelve elements,
. () what is the maximum number of’ elements in their intersection? .
5 7 The minimum? . ' '

(o) - What is the maximum number of elements in their:union? The minimum"?

3. If ‘m and £ denote a plane and a line, respectively, ‘draw a sketch to

& N s’how each of the following situations: - "o *
() wNsz =96 . o
(b) m n L =4 . - ' ‘, .
« (¢) mf% = point A o R
b, If m, n, and ""S Ndei;ote planes, draw a sketch to ) show each of the
| . »
' ~ following: 7 . o -
\(a) “mN rz(line 2 . (¢) mN nn-l_; = line £
() mNn=¢ (@) mNnNp = point A

-

‘5.,  How do & ray and a half-line differ?

6. How do AB, AB, "BA =and AB aiffer? . v

3 | . X - Q
’ K - ' oo .




P

- -
»
. .

“T+ Consider the accompanying sketch, and the lines and planes suggested by
. the figure. Name lines by a pair of points and plgnes by three points.

. o O
. . , 1.

N

Nanb the following

14

(a) A pair of intersecting) planes . /}
() A pair of parallel planes .‘g -
(.q:) Three planes that intersect in a point
(d) Threg planes that intersect in a@ine »
“(e) A)ﬁr of parallel lines o
- (f) A pair of skew limes - : ' / _

(g) -Three lines in the same plane that intersect in/é point

(h) Three lines not-in fhe sa:ﬂe plane, that intersect in a point
(i) Four planes that. have exaetly one- point in common.

8. How many planes are determined by a line and a polnt? Must any condition!
' be placed on the line and point for the answer to -.}ae unigue?

. 9. Four howyses, A, B, C, D are on the same street with two boys living .
in house A, three in B, two i C, and two in ‘D, as™khown below.

i
'

j

rn

¢

[OV)
n

- M

>
w
Q ¢
(w)

¥ the boys form a ‘clu'fa', at which house should meetings be held in order
to minimize walking? '

. : 243
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. " . Answers to Class Exercises
"SS- -: Other orientmtions are possible.
: e " _
. ) . . :
. .

’ ) : . o

LA N

: .2; a) ;\ N '.b) |  ' : E c) '
. ‘ . (. | ' .' ' .

a) :
» , :- A
3 ' T . ;
."a-" S, )
- ” \ Py
* . o Wi ™ ey S, R - '.ﬁ’ - Y - 2
. ' : g ~ o B
- 2 . .- .
L. |.Number of Number of ) '
. Points . ) Lines
R ST ey P AL e . \ . -
) 2 l - .. . v '
. re
f. R v ' ) . ,./'
3 ) ? : . . . /,"' ’
b . 6 B : 7
- A
-’ i . - 4
, p) . 10 , . :
. R T-C Y, 1oy ) 15 " L \4;2-
* ‘ & i : . ' .
, _ N ‘ K -]Z;N(N'- 1) - » -

_ﬁ_*h__;: 5. Since the ends of any three of the tablefzggé}determine a plane,'a total
ER }?f four planes,are possible. The thre® points of the tripod determine- '
- -”::> only one plane. The ends of the table legs—meed—only lie in the same . -

\\“piane; and thus not necessarily,be the same length. 4
. ¢ B . . . Y- . ' .
. 7' Answers will depend upon the situations. These questions are deslgned
8. [ to help you visualize lines and planes in space. ' ' _
90 N ﬂ/ hd
. \ - ) : : ) - i 2 4
[ * -,\. . . . ‘ » - ) .
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.5;10.--Seve:a;’qpsiefe.aie pdsaible.
(@) ® - .
)

350
B
2

6
2. (a) B
(v). BC

PR H
=
.

13

3

15.

/

(e) BT

@

(b) 2}

© T |

Either one 'point,' or the empty set.
. _

‘and QR |

and T’
-and @&,

v
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»
-
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- " Chapter 1 -
. . o ? _
TN .. NON-METRIC I ;
T X o . . '
] 4 o N . , .
ll 1 A_ngles arld Triangles L T _ _ ,

i You are familier with the terms angle and triangle. How do we c;ef/ine/(and
use these words in geometry? .We define 3135_]5 a5 the union of two rays wgbi the
_ same end point ndt bath on the same line. -The common end point is ca/lled
. the vertex of the. angle and the rays e called the sides of the angle. Thus ’
in the figure below, angle ABC_, written & ABC, ’b composed -of the. rays.

ﬂ end BC with _polnt B 1n common'. o T .
S
N v '
. t
~ | ., M O ﬁ
"
-~

.‘—'

In the symbol "AABC " the letter 1n the middle alweys nemes the vert.ex.
& ABC and ACBA, however, both 1ndicate the same angle. Notice that the
;__ggle is composed of rays, not segments. A figure such as_the one shown

~ below is mnot, by our definition, an angle. . _ _ o

. ~
L ; o : . . . C . _
: '.l‘he figure does, of course, detemine» -an angle  in that .segment BA. ‘suggests _.-J“
.ray BA .and segment BC suggests ray BC """" Ilehe,a.g%relysﬂ, then, dive us an -

‘angle as defined.
. . An dntultively simple aspect of en engle ‘is the "ingide" or "fnterior”
of the. angle,. Probebly every student could point to the area or region we
'\have inr--mind when we use such a word. An angle divides‘. a plgue 1nto.£wo
regio‘ns ‘and 1n .some sense of the word w‘ mean the smaller of&e two regilons.

Describing such an 4rea in terms of our previous ideas involves the careful




-tion like the one shown,

' RN ’ : : \ . . L.
LY i . . B . .
. b . . . .
- N . ° 1
. . . ¢ .
. .
.

L
&: v.\'

_use of langua"ge' if we are to say exactly what we .mean and hothing else: .
Recall thatq a line separates a plane into two regions. Thus, given a situatee

]

e g e -

. we may use points of the plane to identify the ‘two regions, that is,'the

two half-planes. let P &and Q be points suclp tﬁat the intersection of the :
line f end PQQis between P end Q. Then P ands § are on opposite -

. sldes of line £ - the term. "p.side of line £ ", we meen the half-plane
. b

that contai~ns the point' P. . " . ' -

[Y

In the following figure the horizontal lines indicate the A-side of

s

B - 4

,( _ € 'x.

-

. .
s ‘ . s ~ A
. I. - . i .

N With t&se ideas we are now ab“le tn descrilbe lne"interior of én angle.
Given the angle ABC, - - : ,




;
‘.

If ve egain refer to the A-side of 'ic' end the Clside-of BA, then the

intersectiou of. these two regions , doubly shaded, is what we mean by the
interior of &£ ABC. ' '

+

- i Y — w vy

o A 44 \'
' \ "\\‘ s 4 : .
] .. =
» e a—
[ 4 ¢ B 18§
) )
il -
. - ’ -
N ’ 1y iy - . .
a : -
. | - . c i. !
.. - : L A
. <L : . . T . ” ) _/‘. - -
.' ’ . > A ) ‘e |

Formally'z we 88y the 1nterior ofAA'BC is the intersection of the A-side
of BC "and the C-side. of A‘B . .

Still a.nother way of defining the inter:lor of an angle is to take any .
.% point, M, on BA and any point N,\on BC These two points degemine

. L .
. a segment, MK, as shown _ » . _ ,
. ' : . . . ‘ Tt e . . ) ‘ . . .
. ] . .- :
e - <
N . . ‘s__g.. A4 )
‘.‘ . e
N ;
L . :
. é ’ d
R o] -
+
[

.. We may: define the interior of £ ABC to be the union of all such segments
with bhe exception of' their endpoints., Why are these definitions of the in-
. jrior of an angle nct the same if we 1nclude%e endpoints of the segments?

. . ) 1 . - v . .- s
. * » ’ - 4
‘«.‘ . . N # ) -
[} e ) . '-2,"9"‘
.« \ ’ ) : 94; »
‘ -

A}

o
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ot

.\'

TS we. see 'that the resulting rays fgrm four angles. We édall a pair of oppos&te N
3 ] 5 - ®

angles, such as .z.:. BPC and AAPD © vertical anglés. Notice that ;their

pair of vertical angles,'A AFB andA CPD. . N .

'TT1§£E ey . _ S - . o, s
.« < -Three non-collinear°poihts, A By and *C, will determim thrég
wents, AB, K, end “EC. The ufiion of these three: aegments 18 c&’.l.edf“-% :
‘triangle ABC. end is written A ABC". The degments are called g_id_eﬂ of the
’triangle.._ The points A,'B, and .C a:re called vertices (plural of ventex)
and angles <. ABC, . BAC and £« ACB determined by* triangle ABC are ? :

-

17

-y,called the ﬂgles of the triang__ S _ . SN -

,AAC = TBUSE U,

5
§ s S . ¢

i . LT e .
Note carefully the dgfinition. It is the union of Begments, -not l‘ines ‘61:‘
rays. 'Although the;segments -AB and *AC . determine the rays AB ‘and A(;"

" .- ‘and thus dgtermine the anglé BAC, the segments themselves do not form the .
. angle. This,is why we say that & triangle determines bn lobates three %ngles, ya

“ bu‘b that the ‘engles are not themselves pert of the triangle. _‘..- vl
- A triangle algo. separates a plane. into two region.ﬁ which we “call the '
: interior) and exterior of the trisngle.’ "Here again we have three .subsets of
the plade, the trigngle, 1ts interior, 'and-its exterior.. We may use the e
* " interYok of the 'angles of a triengle to define, the interior of the triangle.
The' three angles determined, by 'A‘.ABC edch have- interiors as shown. ' -
. , .. s e
: o M T

G . ’ . . [ TORE

sid.es form two pairs ‘of opposite rayq. 'i‘he figurq ‘also oontains another ' E .

{og - - S LU Y

.



he’ three angles of

=4
1}

Thig definition puts the point. P in the interior of the triangle shown
above, since it is in the interior of each of the angles. Point Q 1is
‘not inpthe interior of the: triangle, although it is ir“the interior of .
;:.BAC. If a point is in the interior of two angles of a triangle is it in
the interior of ‘the'third angle? - ’ #

»

v . " A diagram 1ikeé *the one below may help students understand the meaning

N

of the different definitions given.

. You may-emk students to shade regions such as igterior ‘A ABC N interior ~

& ADF,° or interior A ABc U 1in rior A ADF. Or ‘you mey ask them to

identify the points in the union/and intensection of sets of pomts as
4

4 follows e - : :
, - o . R , . .
: . & 8N asc oot (E). o '
RO ‘b Z a3 N B .. . (points A end B)°
. a . —- —t . " - . .
.c. -BA BC - s (point B) .~
—- —_— : - —t . ¢ . .
. a. BAU BF . (FA) '
N e. AABC ) interior A ABC , (F) -,
. . ' ' # ? N
; . ' . ) T s _ , - * Y A fl
| . ) «“ ’ - "S.
I{": QO . ' - 31 9'\) .

-

define the interior .



L] * B \. b :
: LT v . ' v, b -y .
lgs Ehr.erciees o P )
.“ o _.l. . Define the extérior of an a.nglé and of a triangle. (Maka use of the
P+, fact that the interior has been defined in each caee.) 5 b . -,

. 2. Refer to the figure below. ' |
S S0 ) . .

’ Describe the set of pointse

.+ a ame amF. :

v b.zme N B .

o c. the?nterior of A EIE N .

4 Yy 4 B N Bc. ' : - : :
e e (B N, ;D)U(nsn")u(ﬁncn) : e
"‘fwt4m04m‘ . | L. =

' -(No_te:' Exercises 3-5 réfer to the' folIdving figure ) R e

>

b
b -~ . ‘
' 3. Name four pairs of vertical engles. Are there ot-/herg;z', P L
N l+_.' Neme three half-planes. : S '/"_x T ) ..
[+ 5. Vnat is 2 DIE N ZEPFt . . L : :
.' . . o / | o e
N ©11.2. Simple glosed Curves ,/ e | VR 4 L
. The word ' e" 19 enother ﬁozﬁ which we use in both everyday languege
and in our mathematical languege.' Like many other words, the two usages do.
not agree in all fespects. Below are some representations of curves. .
B P LA . . 4 :’ -
[




 »(a) and (2) are simpie closed curves. \ ~
. . 0 ' :

- A plane cuyve is a set of points, all in one plane, which can be rep- G
resented by 8 pencil drawing mb@ie without lifting the pencil from the paper.

jegments and triangleg a.re bpth .examples of plane curvea. Note that a straight

llne is alse a curve., It 1s this technicam sage that does not agree with
our general usage where curve 1s assoclated.#ith the concept of chengipg N

ddrecticn. . A T .

» .
Curves made up of 1ine segments are called ‘broken-line curves. .

These are often encountered in the graphical® representation of date vhere
they are called brolten-line grag . A curve vhich can be represented by a
& which starts and stops at the same point 1s a closed curve.. Further- '

, if the curve paases through no point. twice, then it is called a sml

closed curve. . ' Notice that. a ‘simple closed curve does rot nelcessarily have

a "\uce" shape, but only that it 1s closed and ddes not cross itself. In
the exsmples below, all ‘are curves; (a), (c), mnd (d) are closed curvéesg;

.~

@ S R O W

' three subsets of the plane, Any two polnts 1in the interior, suéh ae A and
> B 1in the figure'ﬁelow, may be joined by ‘4 broken-line curve' hat does not -

- P, with any point of the exterior, Q, muat intersect e curye at least once. -
4 'I‘his informatiqn 18 contained in the Jordan Curve eorem which states that

R,

';‘
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#° Ve refer to the.curve 1tself as'the bound8ry of the interior, or the
R boundary of the exterior. The fnterior is also ca.lled a re gion, :the union a
of the interior with its boundary 18 called a closed __ggon. N . - e
We may use the concept of simple closed curve ‘1o’ restate the definjtion
of a triangle more concigely. "A triangle is a simple closgd curve wh§ch is
the u.n:lon of three segments. " : e N e '

2

{Ehere are; of course s many kinds of aimple closed. curves’, Ona important
gFoup of these& which fncludes the triangle y-1s the.set of polygons. - A
w is a sinfple clesed plane curve composed of the union of line, segments._

- As with triangles, we refer .to the segments of palygons as sides; -the. aqgles
. R e
determined by the .sides are -called the sngles of theew, th%vertices
" of the angles are called the vertices of thé polygons FPolygons are either .+
w o 'convex or concawe. . : ..1' S -

. e
»

. :
* : e, ® -

S . convex Polygon ¢ concave polygon
S R T . . S o

.". A ;;olygon 1s said to be convex if each of. its sides lies 1in the
boundary of ‘& ha.lfplane vhich contains the rest of the polygon. If we think
' of extending’ any one side then the remainder of the polygon will be contained._
. ' 1n only one of the resulting half planes. . . Y
| _Polygons ‘are classified in'. several vays; one of the simplest is by the R
number of pides. Polygons with four sides are called quedrilaterals; polys .

gona with fives sides are called Entgon « A few polygons with their names
are listed below:, . B 3 N,
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lNeme . L " Number of sides

" Triengle <} . - IS

| Quedrilateral s
g Pentagon - 7"_. 5 .
T Hexagon - : SR 6 “ ‘
o e . Heptegon® T ' T .
B o _Octafon - - 8 .,
:-. S et Nonagon | _.‘ . S /‘. 9 1 Vﬁ . ‘

) _ Other polygons heve names, but such names are seldom used. A project
s+’ many studex‘xts find interesting is to discover nemes for as ‘many polygona as
" . possible, explaining the word stems. . . : )

A segment connecting any - two non-adjacent veri'.ices is called a diggon -y
", of the polygon. Triangles have no diagonals while quadrilatera.ls have two. '

~ From the sketch below we seq the¢ a pentagon has five diagonals,“ \ . '
t ‘ . . - - e . . s
0- - ' ‘ ’
N .
. M 1] . ~
]
» . - -
. \'
" Cless Exerciges: R " . '
F SN 5 i
6. Couxplete the ffllowing table and f,ind a formula for the .number of ) R -
. v diagonals in a polylon of n sides, n > 3 . o ST
. A * gumber of sides - Number of ‘ddegonsls | - )
3 . \ ! t " é
o N ) A o '
L3 o * 6 . . . . .
. . . - ) . & ~
. ) . 7 « ¢ . ,
Zos ' ’ 8 B
Y d A ‘e . }7' * . . -%
. *r . . . .
Y + b4 ~y
‘o n * - \
£ - 1 ;
Lo, 7 v .
L . . 255 I'd R ' ' . .
Id : .
o ‘ F o
: 5102 :
‘»

i
& .
g
-
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: 7._" How many sifiple closed curvesianjou find in the figuré below?
U ‘ . Al
.'.~) ! ] e -
o 8. What 13 wrong wfth using the term "cqrved l:l.ne"? . - C
e T 9. mentify each of the 235‘:98 below as one of the following . . -..
. \, . '.a.' closed. curve, not - dimple ' : SRR w
: . ~b. curve, not closed :
«. .+ ¢, simple closed curve -
. ,’ . ‘ . r_". - _ | . ) - . B . . .o, )
-.__;-__‘-_' . - 10, Are P and Q in J;he ‘interion or e.xter.ior of ¢he curve below?.

'*-"-r ,

s

g S -11. _ What connection does the Jordan Curve Theorem have with the problem
in the }nt;oduction about the three houses and the three utilities?

. 12. -Must the diesgonals of a polygon always lie in Wnterior of -the .
Y 0! '? - L . .- : . Y ‘ ) ’; ’ ’
polygon? S —~ .

ry i [

[N

-~ : ' ll 3 Transvemals, Pa.zp.llels , and Parallelograms

g‘; i When tWo Jldnes: in & pla.ne ‘are both 1ntersected by a third line, then -_"
" the ’ch:l.rd. line'is called a trensversel., Such a aituation 48 show,n below

Ne- ) ]
‘where line t :I.s the transversal. - .0 A ' .
. . ' . . . ] . _' -
4 K 7 . - . !£ ] . o \
. -
- ® ' . ( g
* (“ ! 1 ‘:}:3 ¢ L) .
. ‘. 56 - . ,
*
. [} . i
Rl . -
.
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- often that we - give \them apeciaZL names. Paifs £

-

. . A - ‘ . -‘ - .-. I . ’ . . . N -

.+  Here the aigles have been identiified by the use 0f nugerals written in- -

.. the interior of the angles. This is |
' _encountened before. 'L'ney are be{ng used’ as lahels names, nmch 8 8 Social

' uge of numersls tyat we have not -

Security oumber, room number, “or-a tel pho'ne numbex can ke uag& as a name

Many of the pa:l.ra ‘of angles formed by & trans w encountered 80 °
- : o~ M ’_

are ca.ued correspohding engles. Angles 6 puill
angles. . Do you see two other pairs - : aponding angles?
' Angles sach &s 3 and .6 dieiiEal éd altemete-interior angles. Cwps

¢ <@

-«

' you see am/ rationale rbehind such a nama? . T " '

When two paira of parallel a.ines mtersect, “the ﬁgure formed by the
resulting segnents 1s called a pa:rall'elogrem. A parallelogram is also deﬁned/

-a8 & quadrilateral whoae opposite, side; lie on pmllel lines. (Here meite
_means \o&-interaecting ) ‘We write £7 ABCD for parallel%grm ABCD.

4
. -

- c .. : N

»

In the.figure above segments BD apd AC are disgonals of £:7ABC}D '

. _ Parallelograma and their propertiea will be considered again in‘Chapter 12.

e u] . ; i . . ) vé

"éié.ss.ikercisgg' o S e . ,' ' _ .

~



- L pa_rallelogrem._ ~How meny parallelograis cer you s

c. 13.3 Using the f:!gl!re abo\re, nalne\

) a,. . four pairs of correspoﬁding angles _ '. - )
- b. two ‘pairs of alternate- interior angles T . .
T el four pairs of vertical engies B

L 1 ll, [2, and [3 areparallel a.nd ml, m3 are parallel, .
- find a parallelogram which is. partia.lly in th.e i‘nterizq- of another

the figure? ™
' How meny diegonals? Triangles? = o R . .

e

ll.h Solids - - . ..

- - t
We have examined,many su‘qaets of the plane » such as lines » a.ngles ’ .

triangles, and polygons. There are various\ther subsets of space , not /
"+. pubsets of a plane ’ that we will consider If we use our linea -and planes
. .as building blocks, a va.riety of solids inay be formed. T : .
.By FProperty 3 of the last chapter, we know that any three non-collinear
points deternine a uniqu,e plane. A fourth point not in the plane of the Blrat

three will determine & space figure called the tetrahedron. -We may define.

« 8 tetrahedron s the union of the four trianguler regi%mined by four .

« points in space; .not in the sgme p¥me. In tétrahedron - ABCD Pbelow, the four

¥

. points A, B, C, and D are called the vertices, the segments AB AC AD BC

BD and D are called edge e, and the four 'b-riangular regions formed are
called faces. - - .

py-



_ ‘I‘he tetnahedron is an sxa.mple of a class of three dimensiona.r objects b
known as polyhed,rons. Other representations. of polyhedrons are shown below. ‘

: _ Just\ as polygons separate the plane s polyhedrons separate space. Space

"'_"- IR T divided int¢* three subsets, the interior of the polyhedron, the exterior,

C and the polyhedron 1tsels. CL N
PPlyhedrons 'of the type shown, sre called simple polyhedrons ‘and have

.

A

s
¢

a.n interesting relationship among: the' vertices, edges, - and faces. If you o /

-

will count them in each of the preceding figures, ygu will find thaet the .
'I. - -sum of the numger of . vertices snd faces is two more than the dumber of edges. . ’
* This relationship, V - E +F=2, 18 known as Enler's formula. This fact .
4 is“very surprising, and students find it intere,sting td verify with various
solids.‘ A A
N An intuitive proof. of Euler's formula may proceed along the following
. - - lines. . Consider.a polyhedron and remove& ‘face leaving the edges and
vertices unchanged. Thus, ir originally V-E+F is a constant, 88y n,
then removing one-\face gives V¥ - E +’F k, where k=n-1, and ‘now we
wish to find K. \f we think of the polyhed.ron mede of r}lbber or dome very
deformable plastic,.ve ‘may open 1t out.about the missing face so that a plane /o

LS

L[4

/

. su'rface made of polygons results. Although these polygons may be shaped N
‘ T differently ‘then the faces of the original polyhedron, they will ve the same . o
in number, end:they will have the seme number of vertiges, edges, ‘and faces.
Thus, the numericﬁl value of V - E+ F . remains unchanged. The argument in .
,t;\ following paragraph% is applied to the,cube as a speci]fic example. Notice
- however tlzat at no step ‘does the argument/depend upo'h sny special properties

»

o - of* the cube but applies to simple polyhedra in generel. o . )

0‘259...-.' . T ’

N Iog -

i



! . * . _ ~ ‘ . . ]
’ _.o ‘ , - bnd [} » . ) -
. A " i . - .-, i 3 . v‘ . . .
P - . . _ *
S Removing 8, face and_ "opening out" the .cube results 1n the following e
. .'transfom,ation. We in effect remove the "top" end "flatten out! the remainder o
h . to give the plage figune ABCD shown. Notice that . although the shapes 'change s e

e the number, of vertices, .edges, a.nd faces remains the same - The value. oj.’ «
/V’ZE+Fﬁssun k. - ' ‘

A
A3 [ ] . A . B\
. w ]
' If we draw diegonals 1f each polygoh to subdivide the polygon into i
triangle‘s »- the value of V-E + F remains unchanged for each diagenal
3 < s
. adds one’ edge and one face. Adding 1, to each of E and- F does not -
affect theé total ¥ -vE + F. : v '
3 M . . -~ [
' D C - * ’ '
. .
&, ’ ' ’
4 (l v . . 4
2 . [4 - . . * § )
. . R
) _ hd ?
. ~ . !" . g ) ’ | ¢
.‘ . [ . . . . [
. ‘e . A \7IL ?
N . 4
. e . ‘. . N -

. R Any trianglé‘ 1ike g ABF which’ has only %ﬁ(side exposed to the "owt-

. eide" may be removed vy deleting eide ‘AB. T
: * .i '
l - o * L 4
) " ' ; [ )
. > . * » . i . r ' . ] / -
. -~ 2 9 R ‘ ‘0 * ‘ ’ ) -
- v 3 ~ ’ & ) 2 , .
Ny "‘:\ . / o ¢‘26j e .. -
. . 4 . . ! ,\{ ll .‘ * P (




..

'by‘ 1. Ns mey‘@lso remove BG, CD, ep:i E to give the

v

gegms to have precedE& Euler in discovering it. The number of vertices

faces of any simple polyhedrom is two more than the nmnbér or edgea. i

~ Sometimes this fbrmula is referred to as Descartes! formula since hl .
d

" B V-E+F=% . .. ' "
. . - . ' . i . .. . ) ) - o 3
L “ J __"' . ? . T e . o ST —-——~,l_ -
: . R . -. . ) . 'y » 7
‘QOther Bolid.s e - - .
You are familiar with cylimiers and prisms like the ones shown below. )
. ‘_' . ':
s 261 °
S

s

, @t 5. I CH . 2
. f" . 0". :;_‘-._ _. D" . '.\( : - . o ) c . L . . y
_' . .:bé‘vo > . - . : , YR - . " - .t . -
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YA - . . e
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Ao L ,"
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) Wt . : e )
R34 o . .
. SRR . ."
] p o N i -
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. H - .
. - . . . . N
. Deleting a tria.ngle such as " A AEF, by remov.tug A add AF., also
leavea V "E+F unchanged for this ,glecreases V by 1, E by 2, '_.and- T
F by 1. P : S . o e
. One or the other of these twa methods of de'leting t;‘iangleé nay be
. carried out until only - single triangle remains. The value, k, of - .
V - B+, has still pot changed and at this point ‘we resort to counting. 5
- . . - . ?0 ‘
. ) . . T . ..7."
+ . N Q .
ot . ’ . . E3
- ﬁx X . . . .. N
Herewe'seeth'at v=3, E=3 and F 1. 80 that V-E+F=k= =1,
" and sinde . k =n.- 1, n = 2. Again recall that the seme result would oceur AR
had wé started with eny simple polyhedron other than ‘the. cube.. _ : . . /
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- These examples of specialakinds-of geemetrical solids to be cpnsidered in
. moreqd lnhy'students whdﬁgontinue to study mathqmatics. Indtead of treat_

ing.eadh.individual.solid as uaique, mathematicians nse general and broad ‘
definitions to enqpmpass whole' cgtegories.' Here ‘we- will indicate g'hore *

; "} . genergl{development of cyliqders gnd prisms,~_ T T .-
B . Let us exqpine hOW'such solids nay. e formed \ '~ﬂ e

Nt ,Z Consider any;. simple closed curve~in- a plane and a line ﬁot parallel to -

:'\ the plane: ‘ - ' 4 . T

Notice first that the use of the word cylindrical does not- imply circular
. _in cross section. This is andther common word used in a broader sense than
' we“normally use it. Second, sifice this surface.is made up, oﬂ lines, it ex-
tends indgfinitely in both directions. The definition here' includes the case
where cross-sections are circular, such es repredented, by a cardboard mailing
\ tube. In Jjunior high school most examples will be special cases ofe thé‘more
general definjtion given above. Future work however makes it convenient to
‘. have a general definition of this nature. )
+ The &imple closed curve that gives the surface igs shape could be a

polygon, but the surface is still called a cylindrical surface.

.

... . .. he . . l{).().
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.. T " R When twd pa.ra.llel planes intersect such a surfsfce » that po.ition of the
) surface between the. planies 3 together with the. regions cut from the” planes s

_'forms a prism. If the créss-section .is .not a polygon but some ot_her closed
' curve, ve get what is commonly caJ,led e "oylinder. *(Oi'.her defiritions of
prisms- and cylinders thﬁt-use the concept c;f cbngruencwre «sometimes given

."I

_ in geometry booke.) v - . .. oo .
« "The polygons in the two para]:lel planes' are called%'ases. Prisms are - .
. o 81"ten classified by their bases. -Thus, we have triangular prisms A hexagonal' :

prisms, and so}on.__ -

v ' M- - ) ' .~ . ' t ‘ R 'r-
- Other classifications are possible, and some will b€ taken up, la’ter when we

. »

Tw consider volume -end e.re@. : -.‘
We mey also treat the familiar cone and pyramid shown below as specia.l

»

" cases of a more general classification.

..




' Such & surface is called a conicdl surface. o -

-,“} .._ . _ "; _.‘..';‘3-_. | ! ’. ‘..7. .._-
Starting w:lth a simple closed curwve in a plane a point P not in the
plane and all 1ines thmug‘n the po?.nt a.nd the .cnrve *a surface is generated :

asshown. ’__- o 'a

Notice that again we are using a word.in this case conical in a more

~ ‘deneral sehse than 1s usual in everyday language. ‘Common usage~ of conical
-implies circular, al:bhough this is not the case with out,use in mathematics. .

The genera.l case above, however, cert;ainly includes the cohmon conception of -

"a conical surface as.a circular cone. This occurs when the eimple closed

. [

curve is a circle., . ° . - .
In the following aketch the simple cloaed curve 1k ghovn as a polygon. )

)o
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‘Actually, the conical Surface coptinues indefinitel}' in ‘both directlonss

..,. It consists of two pieces with only “one point in ccmmon. These pieces are

.cailed nam ‘e The second nap not shown in the figure , occurs inverted

* ‘and above the pofnt PB. = Ao c . - s

. B < the intersection of one of these YI\e.Epes and a plane i.s ‘a polygon, L

5 then the resulting dlosea slirface 1s called a pyram anid. 'In the figure above "

~e see pyramid. PA‘BCD. The point P is’ 'celled 131e _ﬁ_ if the pyramid .
polygon ABCD is cal,led the base of .the pyramid:” A tetrahedron is also an

N ' .example of 8 pyrantid. The familiar circulgr cone is formed when t.he ‘inter-

s section is not . g polygon but, a circle. Like prisms, pyramids are classified

. by their bases. !.l‘he tetrahedron 18 eti‘iangular pyremid. A ‘rectangular

v '-snd.'hexagonel-pyramidszje shown below. -

The construction of cardboard or stiff paper models of many of the .
above prisms and pyramids is instructional for students and they find it }
_ very e_n,joyable. Some patterns are glven in the SLBG Mathematics for J l
High School, Vclumes I and II. These'golids may be used in com’;tirig /"
edges, verhi,ces, and faces, in verifying er's formula, end are ve;’y}(elp-.
ful in developing space perceptions., ' . / /

, . 7, /
Class Exercises a e

. o
215, If a plane cuts a pyramid between the apex and the base ). fEhat portion

of the pyramid which does not incélude the apex 1s called a truncated :

.-

L

~ pyremid. Sketch a truncated pyramid with & hexagonal base.

Lo a
.16, Sketch' the pattern for a triangular prism. . .

' 17. Does a cylindrica.l surface separate space inti:: two,, subsets?7

P

.18. Does a conical.surfacé separate space into-tws #-"subsets? '
. * . R .. . . /& .
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115 Sige Trips-(omional) L BRI ’ ~ Lot T
There'are a varieiey of side trips in seometry that are nan-metric in o .
o nature. Many of these are ‘of -a puzzle nature, and although théy can.be cast
e in a humorpus vein, they H‘Rimportant on another level: . ~* o .
- ' One nf thege problems that is related to the Koenigsb‘erg Bridges problem
is the following : R . . . e et
. : D.raw a continuous line.cutting each'segment eXactly once. .
_..-. . . e C o o . . . o i . L‘ . .. . -4 ., ] . o~ . . Yo f
®O . ‘ » R .._- . - .L ¥ ? 'y N " " » L .‘ ‘ .. . * ‘l .
... . ' . ._" Y ’ * . - ,'-’. ’ }- - d - . o ) Y . ’ 'b

This seems to bé,& siéple yroblem and indeed it is. &imple‘to sta.te, . .
howev%r, its solutidn is elusive. A firet effort such as the following, R

. p - v
.. 3

- . - . 4 " / "_. . \ %‘D , ) e . .
- : . : T L pe— " . : X e,
' T s 4 AN e
, :.: , _;:-N\\i;~_1“”‘:;—‘ik\s‘:i:) | ‘ . i
: T e - ' L] : S
' seems.to need only a,little change to be successful. However, such chenges )
A always: seem to require other adjustments. Studeénts find this problem very
-4 . . . L I

challenging and enjoy seeking a solution. Actually, a solution is not pos- -
-l sible as may be shown-by treating it as'a unicursal problem. Think of each
crossing of a segment as a path and let each region shrink to a point. If -
' we letter the enclosed regions A, B, C u, and E; ’ and the exterior P,
then drawing the required line is equivalent to /tracing the figure below// P
‘ without 1ifting your pencil and without retracing a s,eguent. Then it ):{ecomes
e a network which may be examined for odd and even vertices. Points &, B, D,
: g and P are all ‘odd. Recalling from the introduction that no patt;‘rn with more

‘ / ) than two odd vertices can be traced e conclude. thé problem is i;:{possible.
N eP ot . .

-




. problem is' t

" is easy_ t4 draw a map that will requise four colors.

" /r - v . v . .
. . . N 4 ) . - =~ . .
- . "_, . & " - v ) .' s , \ . N . ! ¢ ‘.-

o A pej iar ob‘jec:t7 that contradicts m of&ur common notions about’" .

‘4 °J surfaceé, and. edges;. 1s the Moebiug Strip. “This is mede ‘from & stri"ﬁ of )

vpape g made into- s loop by giving ‘end a twisy before fastening. L
o A I ¥ . .8t
T A L L : o fC . o

LY S - - . . . ; . t

/ T . -'d--ﬂ--d—‘-—-——-— - o ——-—---‘--- i -

S B, "D '

coe '. *

C i '_ 7 . ] . A *
‘ L ' .g . “‘ PEYS - . :

H . . _."'i. ' o ' - .. _o. ..
N | ) Co T
:} Y J I . . : : L '

‘ TLIf yau attempt to color, "one" side ot the Moebius Strip, you will. dis-l .

cov.er that i; has only one side‘ Also , following dne nge .will show t.hat it ‘

- has only * a eingl.e edgel A still more surprising %esult occurs when. you o
(or studer!ts) attempt toLcut into two pie\ces along the dottegh line. You N
will also find it interesti (-] to invegtigate what happens when you cut one-,
thirdeof the way in. i’rom' ne edge. .Ai

ssors will provide man interesting questions ebout
a4 .

und wspaper, a roll of scotch o~ e
tape, and & pair of s ‘
a Moebius Strip.

Another probYem that is e'as;.r_ to pose and has been tackled by mathemati-

.'c_:iansf without sudccess for many years is the four-color map problem. Th'e ..

following: "What is the minimum number of colors necessary

to color a sfiap 'so that no two adjacent ecountries have the seme color? It

He;re mxmerals have been used to designate colors. L ®

It is generally believed that 4 colors are sufficient to color any

1 4

map, but as yet no proof of this conjecture ‘has been ,given: Neither has

.'a'nyone been able to draw a map that would require more than b colors: ..

Foilowing are some maps and‘a way of coloring fhep with U, or fewer, colors.

-
> . ¢ . .
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Jmm‘ high Bc‘hbm‘ students’ enjoy arawing such maps end atteupti&B “t0 .n’.. %

a

. coldr ‘them in four colors or 1ess. g:hey also, ex‘i.ioy challenging you to colpr

such MEPS o With 8. 11tt1e practice, you can color most meps 1n. a few mi‘nutes. _,'.__--‘

.
B

A diecussion ‘of this problem, which at present has 'neither proofv Bo’i‘
d:[sproof ). vaides a good opportunity to ex-p?re with etudente the
 between proof in gengral, and drawing conc cns by examining
.AThe fact that’ it' seems possible ‘to color a.ll maps we. may dr&w does not imply
that we will e able to so color all maps in the future You may alsb dis-~ .
'cuss ‘the importance of a single counter example ’ which 15 sufficient to prove -
" a statement false. Such a discussion will help to 1lluminete the statement .
attributed to Albert Einstein regarding his theory of relativity, "No number,

of observations will ever prove me correct: . & single observation msy prove

me wrong.". . o . - . . .
; . nﬁ . : N & ] '- -~ . - ; - .
. . - . L
. , . . ‘. . '. - - , . , - .. i
ll 6 Conclusion . - ) . . -

)
In this chapter and in-the preceding one we have looked at aspects of

geometry that were not dependent upon measurement or distance. Thus » many -
of the geometrical facts familiar to you have been omitted. We have seen
o equilateral triangles, no congruent figures, no rectangles, no right
angles,’ etc. 'I‘he_ next two chapters, however, will consider meny of thése
ideas. - ' ' “ )
" Neither have we established a theorem-pr&of sequence tha.t you undoubtedly

recall from your study of geometry. Our objestive in seventh grade is not

-~ tQ teach deductive geometry or to develop an axiomatic system, but rather

..to provide the students with enough background 80 that their formal study -

.

AER o . 7 .1 15 . ¥ L
“\\ : . ) ~ . : ‘

of the.subject will proceed more easily. In ‘grade ten or .wherever formel - , .
. - . . . . i . . . ° -
W : - 268
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:; geomej;ry is encountered, a careful logice:l. study of the last two chaptens

i (and the mext two) will be undertaften. At that timg s cereful distinctich. .

I between axioms and theorems will by made.. An axiom,,,d statement aecepted

© as tyue without pz‘oof has m&ep the seme position as an undefined vord, *

 Theorens. sre statements thet eze estsblished as true by prdof, using axioms,

' definitions ;, undefined words 5. anu previously established tleorems. They

ughly correspond to our ds#initions mpade from undefined rds. Cos
STt is imporbant to consider carefully the space %ver which our a.xiqms.\' -
sre meaningful For exsmple, how would our geometry dif‘fer 1f ve limited .

. our “space to a circle and i$s imterior? -All‘our exlomm could rema&n
unchanged but_ the zesults would be qu:!te differex;t. Points would still be R Y
points,o-but 'would all be located on ghe cirgle or’its intei'ior. }nstead of K
lines extending inﬁeﬁnitely, they’would stop At the’ circle. How would - ? .'

© "“rayg" and "engles" differ? If "parallel” lines are still défined:as non- '

"inter 'cting, how do they loc}s in our nev space? What cari we say about am'

3

' "parallel" lines \ ' ,Pa.rallelogram
. , / .
Do every two intersecting lines form vé'rtical angles? You might find it
interesting to speculate about the differences ‘between such a limited

Veometry and the.-one we are in the. process of establishing. . )

You wiil en,,joy reading Flatland, A Roma.nce in Two Dimensi,ons , by’
- E. A.fAbbot. This is an interesti and. amusing book describing a world of
two dimensions peopled by geome al_ figures. The hero is in !ja_il for .
" cleiming to have talked to a nwstericus voice from some higher dimension.




4 n—'.-.y-: .

Is it possible to walk in the house w:l,th the floor plan below

any room?

Lol N | .
7." ’ .V . v
L 3 LY e R . @ .
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- passing /‘hhrwgh each ‘door exactly once‘t If so, can you 5tart. ;ln
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A ” » [ 1Y '
s e -t ' Chapter Exej@es : - K Co
L B S . - . '
e ,~.l.. Ked:%.w the pa'bterns below on .stiff paper and make model of the prisms. .
- .o . i ‘ .- .o -
\J. .~ What are their nemest T 2o / : S ® T
. ~. 4 - ooy » . : C . . : .
- V ". ' LS . -s. : L4 )
. ° - »!.. . F < l' *
. . . -t L] . -
) ~ . ! ’ - * ° .
PR -. .- . ; : . "
e :.':(z ’ - 4 ~ e -
~ . e % t ' - . " . ; . .
.. 2.. -Which of the following are closed curves‘z Which ere both clo d -and A
o _ Simple? . . '
P -V A \ © (b) .
- . . J .
.;_
- . A Fd
3. In the figure belov 15 £ BBC = £ DER T . *
.~ .
*
ki, ., Draw the.following: v , .
" . a closed curve whicH is not simple. , y '
+ . b. acurve which .1s not closed but separates the plane into two .
- regions. . ' ' \
c. a curve which soparates the plane into three regions. .
Tel ” . .
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> .

. Does Enlerts g‘pm\;l_a hold for the following _Bo]_.id?_. e -

-
»

_ .'.'f_ - - . -.

o 6. Make a Moebius Strip witlf two &wists insjead of one end investigate
.its properties. . S,

' . oAt L ' - ' . - ,
e - - T. Color the following maps with es f‘w"colors as possible. ..

LY




93.‘_ T. " This questiop is intended only to provoke some thoug'ht}m simple elosed

3

U;he exterior of an Qg_]_.g “s the set of s.ll points
_ neither in the interior, of the a.néle nor on ‘the e'ngle,. .

Answers to Class Exereises

The exterior of a triggg}_e 1s the
' are neither 4n the interior of t.he

4

* - ( v W

\

riangle npr on tpe triangle..

o

whether they inc;ude or exclude any régions.

a.

euliime

IE .

poiyt B
"..b_, poipts B

. .
-

and C ?.‘
(AAPB, A.EPF), (<L APD, <.CPF)
: _(there are other pairs),

t‘

point B

(camacmm,&um,émm,

e, ABDE RN

*

L 4 SR
the pl@ne tﬁat are
:;t of a.ll points of the Qlane 'l:hat

Other defini'gions mgy be given, 'but ust be exanined carefuiﬂy to see\\

re

.

’

7.

o

Rumber g Sideg . Number of Diagonals.
Y, o:
b . . 2 .
d : 5 ) , ' 5
.6, 9
T 14
8 20
. ,‘ . v
n T $nén - 3)

A Y

curves.,

. From the Jordan Curve Theorem we know that any simpl_e closged curve

-’

' D - side of BE; A - side of CB} ‘E - side of AF, (there are others)

v
I
1

& /,‘\.

It is interesting however to examine numbers of possible curves.

.'will bound some interior region.

combinations of gdjecent regions. Except for those that .&ave only one

-

Thus we may exemine the possible

~ point in common, every combination of adﬁacent regions is associated
with a simple closed curve.

" IS
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Thus region 1 'ialdeterminedﬁby a simple closed curve, “as &re the
double combinationg 1-2 end 1-U% Th§ pair 1-7 is eliminated L
however, since the ! have only one point- in. common andswnuld not. there- :
fore result froma simple closed curve. ,The follo fag combinations of ,
" three regions algo T result from ‘such curves: ‘2-3,_ -2-7, -h-ﬁ, Aah-7, 2-k
Analysis of this nature, taking~advantage of symmetry where ssiblg -
will reveal. that there are 63 simple closed curves‘contained in the -

-

>
original]’igure. o - . T o
. . - . . R ¥ ‘ - . »
8. . The word "line Xas . nsed only with the connotation of straight “thus *’
: i .
the term "curved line" is probably a contradfct!bn. 5’ T,
9. &. the Ystar" . ' P o
"* 'b. the line aegm;nt the "goon" - e . Ty
C. the "dog" or the "bone *y _j.‘ . o
e - - - - Te .. .
"10. " P is 4n the exterior; Q 1is in the interior. Tt

.'.‘ .

11. Before the last utility has been connected the other.two have formed'
e simple closed qgrve.with one house in the interior and one utility
id the exterior.

12. No.. /

. 4. * ' .

13. a. &L CAP, L ABE j ¢ LCAB, £PAD

, 2L EBQ, £L.CAB . ’ , " £CAP, £BAD

' Z_PAD, L ABE < | £ hBE, ZQBF

£ QBF, L BAD . zmr et
b. £ CAB, £ ABF - w e . -
’ Z2BAD, L. ABE : 1 S '
’ R /?l *
v :‘,!:. 4’,"'\,‘“‘ 1.5 /: R . ’\ .

j ’ . -— . 2’("“ | ar : ‘
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“19. a.. Yes. Anysngxh must start in one of. the robms with five doors

- 1h. CU DEMG is partially in [T ACLG (other enswers are possible)
There are nine parallelograms, thiee diagonalsf and seven triangles.

RIS . ~ . . . - ) - ~
s A - r : C .
) ) ’ . . . L RN . T . .\ ‘
RN . - . N . ——
Iy 4 .
P S ‘e
. _v -
- 2
L . : A
- T o “ 3
< S o N iR
. .
’ . <" .
PR .
) . ;
2 :
. 160 -
e - .
S / , .
’ [} ®
.
y. . .
e ! - s
~ . ce
A 4
- ..
'.

YR No, three ‘subsets;~ the surfﬁce:‘ its interior, and its exterior.

' 18./ No, four subsets; the surface. itself, an’"exterior", 'and two { o

- "interiors", - ' . TR ’

-

What we most commonly thi_nk of as a cone however, does separate

space into three subsets.

~

_and end in the other.

b. Not possible, since more than 'two rooms heve an odd number of

s -

~doors.

s e 122 -
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- MEASUREMENT il

. o8 - - R ) *
'. . ‘ - ‘ ‘ | - )

~. Introduction _ . , o

.In -the last two chapters some or the non-metric propert:les of certain

- *iets of points were developed. In this and the following chapter these 1deas -
‘ui}.l be related to the physical world through measurement. Historicelly, :

"‘“ geometry developed ‘through the needs of man‘to measyre and compare certa:l.n
phys:l.cel things in his environment. J}ven the word "geometry ggm_e from words
which meant "eerth measure." ’ : s : : . /

These chaptere will not develop a rigorous explanation of meeeurement ' |
properties, but will attempt to furnish intuitive ideas, of length; area, and. -
volume concepts as presented in the SMSG Mathematics for Junior _I;_i_gp_ School,
Volume I. It is igportant that youngsters understand the approximate nature _ ’
of measurement, the development of arbitrary units /i;or measuring rious @
physical obJects; and the mathematical interpretation placed on these concepts.
A major point to- be ned.e in. this chapter is the fact that in measuremedt our
- units are. completely erbitrary and altlbugh we are free to choose a yariety of,
un‘lts, we ultimate]y settle on the most comon stendard u.nits' for convenience
end ease of communi cation. Sclentists are fregquently confronted with measur-
dng situationg/vhe i is mor convenient to 8reate a ’hew unit th@n constantly
- work with veW or very small parts of other units. The "light-
year" -and "Angstro are both units created to fill such enecial needs. " '

o Such _common questions. as "How many people went to tm game?" or How
much meat shall I buy?® or "How fast can a Jet travel?" have answers which are <

'_' alike in one respect: They all involve numberg. Some of these gwers are .
tound by counting, while others are found by measuring.. @/\ '

‘The question "How many?" indicates that you are thinking of a set of

. obJects and wlsh .to know how meny there are in thes set. Such a set is called
a discrete set. Questions as "ﬁow much?" "How long?", "How fast?", etc.,
T ark used to 4%5cribe something thought of as all in one piece, without any
" breaks. Such a s)t is called a bnt;._nuous set. Sets of people, houses, or
ahimals are discrete setsf a rope, a roed, or a flagpole are all thought of as

e

. heing continucus since they sre like models of line segments; you can count & °
' mlmber of ’.Line segnients but you cannot count the number of-all points on a
line segment. A blackboard and a pasture may be thought of as sets of points o
_ _encloeed by simple closed curves and as being continuous. Such sets of points
* are nqt counted; they are measured. T . \'

R |
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.
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12.1 'Congruence-

,1,, ) The sizes of. sone continuous sets may- be compared in various ways. For7

example, to compare segments B and E—' 1lgy the-edge qf a piece of paper
‘along CD and mark‘points C and. -D.. . .-

~

. Place the edge- ‘'of the paper along AE with point C on. point A If D is;

' - between A and B, JAB is longer than CD. If D falls on B, the segments

have the same length. If B 1is between C and D, CD is 1on er than AB. .
- Of course, we need to recognize here that what we gré really \doing is

idealizing this situation. It is impossible to draw representations of two
,line segmen}s so that they both have exactgx the same 1ength. This again is

an abstract intuitive idéa. that should not becomQ,entangled.ydth the physical
representatioqs Students should realize the differences. between abstract
concepts and physical interpretations of these abstractions, that the drawings

P them interpret the mathematics they study.
Let us return to the segments above and consider partidularly the case -. -

.where they both have %the samep length. - When we write " b = 2 + 2, we mean that
“m ang "2+ 2" are two names for the.same number. When we write AB = CD, we

mean that N and CD are. two names for the same segment, that is, the two

sy

segments are the same set of polints. If AB and CD have tHe same 1ength
but are not the sane set of points, our definition of equality does not allow ;
us to- say they are‘'equal. They, are equal only in size and shape. We use the
- vordecongruent to describe this Telationship. The'symbol denoting congruence
il s "= ", and-we may now write: AT = CD. This is read: "Segment AB 1is
' congruent to segment CD." If we wish to say that the lengths of "the two seg-
RS ments are the same, we may use the notation "AB" for the length of segment iE,

o ‘and write AB = CD. Here we mean that the length of AB 1is the same as the

¢ length of ?D.- This use of the word "congruent" is an extensfon of the use

you probably remember .from high sclicol géometry where "congruent" almost al-

-ways~referred,to triangles. {The meaning here is basically the same as with

triangles and-is,tlie same meaning students will encounter whgn they study
o ' L}

¢ formal geometry. - Congruent means equal in size and shape.

-
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In vorking with the above segments we tacitly assumed the following prop-
‘erties of continuous sets of points,. which, along vith one wore proper'by

(atated later), are the bases of meaaurement.- . T
. . . h Y B
’ . k. Motion Propertx_.\ Geometric ﬁgu.res may be mwed L
- 'without changing their size or shape. C

2, . Cowparison j’ro perty. The sizes .of two geometric . /

.quantities may be compared prdvided these quanti-
ties have the same nature. '

3. . Matching Property. Two geometric. quantities have
. .the same’size if every part of one can be made to

'_c;oixicide to a part of the second so that no part
-of . either figure is omitted.

..-Tl.-zese are. some of the preperties that enable t%le- studeﬁts to relateythe ab-

' stractions of geometry.to the physical world, and we should be aWdre that these.
need to be pointed out %o them as the measuring process is utilized.

v In elementary school mathematics, students make models and tracings of
.geom.etrie figures and test for congruence by determining whether £wo. figures
“have the same "size and shape" by superimposition. In Junior\ high school the
ground work'is being laid for a more fomal deﬁnitﬁn of congruence that will
_.'-occur in a deductive geomet ourse in ‘high schoo].. For example, two spheres
may be :/congrqent" but imposiiig one sphere on another doesn't make wuch '
‘sense. From the idea of superimposition let"® us try to move to a more fomxal.' .

_ 'definition of congruence. . .

-

Q.-

. S;xt:ose & PRQ can be gﬁperimposed on’ A ABC wit:h R falling on B,

_1?,_. .on A, end Q on C. Then there exists a one-to-one correspondence be-

tveen A PRQ and A ABC, each point of A PRQ corresponding to that point

" of A ABC which it "covers" when A PRQ is superimposed on A ABC. For ‘

_ example, the point X would correspcond t'& the point X' . under this corxg-

_ spondence. But it is not enough simply to say that there exists a one-to-one

. correspondence between A PRQ -and O ABC, 'Something else s also involved ’

e |
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fin the notdon of congruehee. Distances mist be preserved, Suppose & PRRC

BRI T supe;imposed on A ABC as indicated by the ,following diagram. T
; W .I . . L .':. ’ T B .- s o R _ﬁ B . ’ -."l
& 7 Q coCe e :

-« {Note: '.Ehe double-headed arrow shows that vertex P of A PRQ - corresponds

. -"bo!the vertex A _of ‘A ABC, and that A, corresponds to P, ete.). S

‘ .' /' ) _ 'men for any two points E A PRQ, the distance betwéen them (i.e., the *

,. * / length, of ‘the segment Joining them) must be the same as the distance between N
.  the’ two points of a8 ABC to xgich they correspond. As examples, the distance-
- betweer ‘R and X . must be the¥ame a5 the distance befween B aw Xt R
R " (RX = E{'), the distanee be‘l:ween Q and P mst be the sdhe as thst betveen L
R c ..and. A (QP CA). ,‘zhese consideretione) lead us now to our deﬁnition. .

) [ . . Y L ) ’ : ' o '. ’ Te :
' ) _ Twa sets of points are sdid to be cogg ruent ' '
: provided that there is a one-to-one correspondence _
_ . between them that preserves distance. LT
.;. ' ' - ’ . , . . .. ’ -') N
{; R g ' By naming our triangles carefully, ve can see immediately the correspoxﬂe,‘
s ' ing parts. : Again considering the two triengles in ‘the: figure, ve may ehov -/
_ -the correspondence as i’ollows. . T
\ ' B. - _'.f ' ' . Given: A ABC 2 A FRQ )
-.' P - . . A ‘——‘V‘P . . l
C =y Q S : 5
‘YR z W
. T
- [A = [P
e~
’ The importance of the preservation of distance for. congruence needs to be 7
. s’cressed because it 1is possible to establish a one-to-one correspondence -
_'“'_ - N -x.
( -t - . - ) R ) l' Tele
| - ) 280
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| wamner: '
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*

. fbetween two sets of points th/t does not: preserve distance: For example, - RS
“and T below may be put 1nto a one-to-one correspondence in the following

) -~

1t

fignre below.

i

e

X2

U . . .

-4 . . ) - .
. - - . . ©

~ Now for any pqiixi;',Y on R§ ‘a_corresponding point ¥ may be found by

", drewing P¥, as in the following drawing..

.

/m : S £

Likewlise, for any point Z on TU, a .corres_ponding point Z! # RS may be
= y

and RS. This is shown { e following

located as the 1ntersection of
drawing o : . j
: ' . . 7 : v

e s e =
o3

- | 281
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~ This ghows that for each point on one line there is a unique point on the other
-1ine, and vice ‘versa. Thereﬂore, a one-to-one correspondence between all the
points on RS and all the points’ on T has beeo‘pstablished, even«though

L3R 4

; ; ; distance has not been preserved. . .
. . ‘With two congruent angles 1t is.possible to 9et ﬁp.more than ope corre~ }
- . -~ R

. spondence. Given, ‘ZPEF = [QHJ, : S ' . '

L

i we see that /DEF = or /DEF = [JHG. Remember, as long as the middle
letter names the vertex, the ordér of the letters for naming an angle is im~ _
" material. Also we have not said that [DEF equals /GHI. If we do this, then
we are probably.talking about the measures of these angles as belng the same.
number and will show this as m([DEF)'='m(LGHJ)? where "m(/DEF)" is a number
indicating the measure of the angle. Here, as in segments, we are making a

n

distinction between the angle and 1ts measure. BEven though we have not dis-

" cussed "measuring” angles yet, we probably have assumed the following state: .

_ : _ . )
ment and its coriverse: "If two angles are_congruent; then thelir measures are

.equal.” “ ’q§3 4 *
: Our definition of congruence is a more sophisticated 1dea than we»wz/}d \7:
, expect seventh graders to accept, but it is the idea for which teache;ff .

these students are laying the groundwork. By cutting, superimposing, measur-

.- ing, and comparing various wodels of sets of points, studeqis discover certaln
characteristics of segments, lines, angles, polygons, and solids. .We will
consider some of these in this chapter and the next.

\ .
b

Class Exerclses _ . ,

1. Giver the figure with the two triangles
' congruent, list the corresponding parts.

-
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2, How would you test whether [_XYZ si\s N
B congruent to, FPQR? Does .congruen "‘\ “ R

. of angles depend on the length of !

. « the sides of the angles?. Explain. ¢ W
. ' \ \\~ . .

»

- 3. If the three sides of one triangle are congrt‘&ent \}'espectively to the three
sides of another triangle, do you thin]s the two triangles are congruent?

N -

'Explain your reasoning, e s \_-._‘_ -,_'
) L
If the three angies of ore triangle gre congruent respectively to the

les of another triangle, do you think the th triangles are cons

gruent? Explain your reasoning.. T \ S
B e, . S e
. ( . . . . 9 N

' v
. . . -
- . . : .
N LY L

~ . . . T N

[

. . L)
. 12 2 The Nature’ of Measurement . ' .

We have said tha,t there are some .sets of points, called continuol‘xs sets,
which require meaguring and for which counting as s'ugh is inappropriate. An- L
. BWers may be. given in terms af whole numbers or they may involve rational num- -
bers, but these answers ard not absolutely precise. The accuracy of the. numh
’ 1used in the: plwsical measuremént process is restricted by unevenness in the' * - - -

- e
. [
.. N

: object wmeasured, by the measuring instrument we use, anc-l by our own approxima- -

" *ion to an ansver. Thereforo, /e say that all measurement of physical objects N
is. approximate. e T - o o, '
" We used the motion, compaxi sdn, and matching properties Arom Section 1 to )
develop -an intuitive idea of congruence. These tl'_xree.properties, together\/\ \ ,

-

”~
with a fourth, the Subdivision Property, are the basis for measurement.

’

N 4.  Subdivision Property.. A geometri® continuous
' .figure or set may be subdivided -~

If a segment is subdivided by a point '€ so that AC CB,_ then A

-+ . the length of AC idjone half the length of AB.
AB may'ge subdivided in other ways so as to ‘_Sompare the length of bne
'\segment with length of another segment. Suppose a segmént is chosen of
any length le:sglan the length of A—ﬁ;_ call the length of the segment: "n".

/’
; n 4
» . : »
. « —B
—} n 1 n 1 n 1 n f{' : 1 -
- = - - > 5
A , ! FB . G ~
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)

L

*

Beginning at a point A in the figure above, a segment of length n - is
marked off L times so that AF 1s of length kn. ‘The symbol "hn" means
"four times as long aa the segment of length n.' It is said that the length '
of AB is- approximately equal to kn, rather than to 5n, because B "falls
closer to ¥ ‘than to G. A sy-mbol fqr the words "is approximate]y ‘equal to"

is a wavy equal sign like this: . o ". Qe may .write in: symbols AB = kn

and read it as: "The length of segment.. AfB is approximstely equal to Ln."
Notice how these symbols\ are used' Sy, \ '

] E . " N ’ .

i " L is the measure,' " cL '

. ~ n 1is the unit of measurement, .
' kn. is the 1ength~ T,

. In the example above, we picked an arbitmry unit "n" which we used to
measure E but ve could have used any unit of length. -, Man first began come-
paring and measuring pbysical obJjects by choosing some convenient unit. Often -
thlis was some part of his body and was quite satisfactory for his.primitive .
culture. But as tribes and countries began ic trade with each other, a neeg
for more standardi-zed uhits became necessary, and the head .of a country might
decree tha the "standard unit" would be "the distance from the tip ofghis

tl'lz tip of his middle finger," or some such unit as this.  ‘Even today
- the system commonly used in English-speaking countries is based on these, priml-

nose to

‘“tive body measures. . "
In the past, disagreements ‘about linear units became s¢ common that a

., group of French scientists with representatives from msny countiries established

an international set of measu:pes. This group developed the metric system
which discarded the old units and based all units on the distance from the
North Pole to the equator. The meter 1s.the basic unit of length in the tset:rjbc'
system. (The meter was-planned to be one ten-millj.onth of the distance along

a meridian from the North Pole t6 the equator, but receatly an international
congress of scientists defined the meter in relation to the vave length of a
certain color of light.) The tric gystem is used by most sciemtists in the
world and is in common use in all countriesg except those in which English is

the main language spoken. We will consider the metric system in more detall
in the next chapter. However, the history of measurement is interesting to
Junior high students and can be correlated with social study units quite
effectively S : ) :

Another aspect to be considered is what is meeant when we say an obJect is
6 feet long. We will adopt tlkxe convention that we mean the length is closef
to this number than to’ any other comparable one. In other words, we say tQat

] .
"the obJject 1s closer to 6' than to 5! or to T7'; that the "true" length ip



. i o o So—
: - « . . . } L;.\:‘-.' | . .
betweed. 5,5' and 6.5'. .The greatest possible difference between the asserted )

length and ‘the "true" length is not more than one-half the unit used for meas- ,
~§ -uring (in this case, 5 foot). This one-_‘half unit is called the -greategt

- -

: Eossible error. R

- AS another example, assume & measurement is given as 2}- , measfred to
«  the nearest half inch. The rgal length ®hen lies betwgen 2}; " and 23 "

and the greatest possible’ error is 3 L or é ", or ]]f ". A diagrem may be help-
ful here. Note that ye say the length of ‘each of the segments below is 2°2- \,
- inches, when measpréd to the nearest half 1nch. ' o o N
. ) f ‘J . . . ~ - .
1 2 3 h
, | I 1 | U R | , |
. - - ) .l‘ Q
4 e . ' — . Possible segnents

Sometimes the form, 2- + 1; in., is used where the 3 E'" indicatea the

" greatést possible error. This shows that the obJject was measured to ‘the near-- :"
; inch. - Andther way to write this would be - 212; ", not changing the frac-

: tion to 1owest terms, although the first method 1s usually preferrgl '
. The Rrecision 'in any'. measurement is shown by naming the smallest unit -

est

-ubed. Thus in the example above the measurement 1s made with a precision of
‘one-half inch, or is precise %o the nearest: -one-half inch. Greatest possible
error, however, is the greatest possible difference between the length of

,&: & segment affl the measurement- stated,, Greater Brecision is obtamy-using'

"~ an instrument whose units are subdivfded by fractions with greater denominators.
Measurements made a ruier warked in eighths are more precise than those
made with a ruler marked in fourths A micrometer is an example of a precisioﬂ _

. instrument whose subdiv-isions are named by fractions with denominators of 100,

- 1000, and- 10, 000. 'Constant efﬁorts to develop better precision instruments

are being made by industry becguse of the increasing need for very close

tolerances. .«
We can see some of the rAmifications of precision and greatest possible
" error when we use measurements in various computations. Let us say that we
. have two 1ine segments, both measured to the nearest E inch: 2]; + 8 inches
ang )41;- 3 inches, respectively. We would like to find the sum of. the meas-
urementd or “the length of the two segments when placed end to end, We could
lay these segments end to end and umeasure them, but suppose we decide to add .
-:-the _numbers 2% and ki- We have mad.e some computations revealing the
greatest possible error of the sums

. - | '28131':- \




"Least Value -Repg:‘ted Méasure « - . Greatest Value
— . i - '

;e lof ofta
ﬁ?.'ﬁ? 2

Thus the sum 7 really has the greatest possible error of n- snd is not as
i"7e .. precise as our origipal m.easurements. . A further discussion of computation with

_ epproximeta data will be found in the . next. chepter. . .
AT Final].y we should. note. that ‘some problems of measurement are psychologicsl
‘ _-_in nsture! For .example, whst does a: youngster mean when he says that h.ie age’
'_1s 127 What doee e\\}sman mesn when she ss,vs thst she 1s 39 yeare old?

< Class ‘Exercises . I o

..

5_. If a length is reported as 5,1- inches s the true length must ‘be between
- _and_ " . 'I'he greatest ‘possible error is __ T :

6. a. . Measure the lengths of each side df the triangle to. the’ nearest l6th

vo - ch and express your answer in two ways.~ L : e
..J . . R . . . . N c

, ‘ b. Add the nnmbers rapresenting the measures and indicate the greatest o
: possible error of this.sum: - . .. '

LA e

Te Indicate the measure and’ the unit for each of the following measurements. '
' - a3 ifeet:ﬁ.u ' o ¢ 24 hours - R ¢
b, 17-'"011114_15“ : s 4. ' 16 ounces
132
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12.3 Angular Measure _ _ { ) ‘ BN

)

E Let us recall the definition of an angle: given two different rays -Rﬁ
_and AC not on the sake line, with common endpoint A, ﬂggLJ A = [ﬁAC. We
need to devise aimethod_for measuring an angle, and we will attack'this'ESSenf
tially as ve did 'measuremgnt/of segments. That is, (1) the unit for measuring
a segment had to be, a segment, (2) the segment to be measured was compared
with-unit segments; and 3) the measure of the segment wvas the number of unit
' segments into which it was subdivided. Similarly, we need a unit angle with -
which to compara the angle to be measured. The measure of an angle is assoclia-
ted with its interior. To measure an ang}e, its interior is subdivided by the -
unit angle. - e Y _ ’
Students can %elect some arbitrary unit dngle and. in measuring various
angles can review again manyvof the idsas of approximation in meaaurement. An
easlily obtained and simple unit angle to use is formed by folding a plece of

3

paper as follows:

. . (
Fold it'once to make a model of a line- separatiﬁé‘fﬂg\haii:planes. Call

1t AB.

hY

Choose & point M A and fold through M so that MA falls on MB.

4

. ‘
:

Then [CMA 1is a model of a right angle.
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This shows four models of. ang].es R all congruent 5 that. together with their
1nteriors 1‘111 ‘the plane. . B

" Refold the ‘paper so that you again have a model o:E' a single right angle.
Now fold 'so that. the rays represented by AM and ™ coinci&

"This provides us with a model of ap- arig_le such that any four _succ?ssive
angles with a common vertex will'exactly 243 in.the half-plane. '
' Refold your paper. Proceéd to make one wore fﬁd as before. You now

have a wodel of an angle, eight of which, suocessive]y placed. with ‘a common _
lvertex, will exactly fit on the half-plane and its ‘edge. The picture below e
‘shows f model ‘of sixteen such aengles. Since this is not a cogmon unit., we
-might dpll it an "octon," since elght fill a half-plane.

. . ] o
- -~ . - : : .. N ° . s )
. o - Lt :
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\" | We may use eight cf these octons as a simple protractor. Each ray af the

. . successively uarked-off octons may be "a8 eclated with--a whole number, taken in
 ‘order from 0 ‘o 8 to give a protracfor wvith a scale on it~suitable for .

;~ - use id measuring angles. It should be emphasizea that the measure of an angle

“is a number. We read "m(/ABC)= ¥" as YThe 'weasure of an angle ABC ‘is seveni

This statement of equality is pe_:_rmi-ssi_ble since the’ m_easure of angle ABC 1is

-~

a number.
‘Eventually the pupil recognizes that approximate readings of angle meas-
% . ures "to the nearest octon" lead him into a situation such as shown below 1n L -'-‘-
which both LA “angd [B (clearly not the same size) have a measure of 2, to

. - . .
the nearest octon. o - )

 {

The need fdr a smaller unit soon becomee a,pparent. The standard unit of
'.axigle-}neasure most commonly used 1s the'degree.‘ Other units are used in more
advanced or specialized work but will not be discussed here. The- degree may -
be determined by a set ef rays drawn from the same point on a line such that
they determine 180 congruent angles. These 180 angles with their interior
form a half-plane and its boundary, the line. ZEach of these angles is a stand- .

ard unit angle. Its measufemeht is called one.degree, and we write it 1@3. '\
" When we speak of the size of an angle, we may say its size is h5 * However, ’
1f we wish to indicate the measure of the angle, we must realize that a meas-
ure 1s a number and say that its measure, in degrees, is 45. 1If we lay off e .
360 of these unit angles, using a single point as a common vertex, then these.- )
angles toge{her with the,ir interiors cover the entire plane.

N .

__/—”‘“.\
-
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Even in ancient Mesopotamian civilization the angle of 1° &k the angle
of unlt measure vas used. The selaction of a unit.angle which could be!fitted
into the plane Just’ 360 times, (as above), was probably influenced by their

calculation of the number of days in & year as 360 In this book we conceru

'ourselves only with angles whose measures are between 0 and 180.- Because

of our definition of .an angle, it is hot possible to have an angle whose rays

.coincide or extend in'a straight line. - , ¢ ’
us the measurement of angles essentially becomes a_brocess of*determin;

ing ny times the;given unit angle 1k contained in the given angle. What

we are aasuminéy of course, is the existente of a one-to-one correspondence. '

_between all angles and-all the numbers between O and 180. 1In faét; this .

very one-to-one correspondence is postulated in many new geomeiry books. The
correspondence is ‘similar to the one-to~one correspondence between all ﬂoints

s bn a line and all real numbers. ' , ) .

Remember that measurement is- only approximate, and often it is difficult
'for youngsters to draw and measure angles precise to. 1 - The markings on a
standard protractor are closely spaced, and the width of the side. of a model
. of an angle may fill the space between two of these markings. Thereforet
" when a measurement of an [ABC 1s glven as 65 degrees, it should.be indi-
cated as: m([ABC) - 65 'Protractors of clear plastic are avallable and -are
quite effective for demonstrations bﬁ the overhead proJector. '
"An exercise that students can do is to draw’ several angles, then find the

“measures, in "octons,"

of these angles. Usging a protractor, the measures, in .
sdegrees, may. also be found- Students also like to exchange papers ang_ measure

. the angles their classmates have drawn.

Class Exercises .,

N
»

8. The sketch shows a protractor placed on a det of rays from point K. Find |
: ! >

the measure, 1n degrees, of each angle named. ~

3
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2.4 Classification of Anglee and Triaggles

. . Now that we -are more fami]&r with congruence and linear and angular meas-
hre, let us. explore some geometrical :facts rela‘ted t9 ideas of distance and
measurement. This section states many definitions already familiar to you but . ¢
are given here for yo reference. Seventh grade students sometimes encounter .. '
difficulties in visu ;.ing all of thé cases of a particular definition.. We
“- " will attempt to poin’c ont some. o:f' these trouble spots in this sectlon. Again,

however, students fieed to have an intuitive feeling for the ideas presented
here before they can verbalize “them meeningmlly e T
- We may now define a right g_ngg as_an angle whose measureuient is 90 E'Erles,
one vhose size s less thaﬁgo degrees as an acute -angle, -and one whose measure
: Jis more than 90 degrees as an obtuse angle. Notice that because the measure . -
_of . an angle ia associated with its interior, we.do not ‘need to say that en -
. obtpse angle has @ degree measure of less. thanaa80. R L
When two fines intersect, they are pei:pendicular (symbol' _[_ ) if one of .'

i ~the engles determined. by the lines is a right angle. Iine segments and rays _

- are said to be perpendicular if the 1ines containing them are perpendicular. -
';Observe several 6:f' the possibwﬁ'es below. Students sometimes do not want to -

accept the conditions as: displayed in (c) @nd (e) Two pieces of wire, or -

‘even pencils, représenting segments, placed on the stage’of/ an overhead pro-

_ . Jector, will often help to make this clear. .. o g
\ - ) , o '_}‘\; H .
\ -, v . ) . N _'\.'1 ",
o . TR -/ g
_._;t._...l - s m . ) \S 'l w
. ~o !/
. c ' ’ \ ) ?\\\
B ) ’ .
. N - - { o "-
- : - _' , ’
L] » . - .
. - . ) . ‘/-"‘ .
. [ 4
*." (a) BA'L BC (b) Line .Z)/Iine m (¢) B L™ :
- | PR
v -
. - \ 7 ‘ ; .
- .- . : & .
- » 1 3 H 4 . B
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If two angles have the sam\&verte'x and ,hair'e*‘a' common ray but have no L gy
. interior points 1n comon, the: ey are called gg_,jacent g_ngles. If-the sum o
"‘of the measures, in degrees, of tw&angles is 180, "then the angles are called )"~

_ supplementary angles. 'If the sum of the ‘measures, in degrees, of two. angles .

- .18 904 rthen ‘i‘he& are commentary angles. Supplementazy and complementary _ s

; "a.ngles may be adjacent but this is not necessary Again, ‘these two texrms are
often conf‘ueed, and students need to see many. instances of both beéfore the *

. definitions are. “well esteblished in their minds._ The i‘.'nglish usage of the two
" words (as well as the word "eomplement") is also a dittle ditferent then the' ., .
: mathematical nsage, and this: pay need to be pointed out,_ _ .
" Class Exercises
T e 9. -If two edjacent angles are supplementary, what can you say a.hout the line - ;
L formed by the "outside” rqys? S : 3 . L.
= .'._10, If two adjacent angles are complementary; what ;;an you ‘say about the _ .
. = outside rays? ; a e o (J ’ v N ,.

‘e . - ) . . - . . R ,




*13,_ What seems to be true of two of the ‘B.ngles of an isosceles triansle? .

_are’ congruent, then. the triangle is isosceles. If all three sides are con-

. 12. What seems to be tme of the angles of an equilat?-]\t;mngle?

Agsin for your reference, we may classify triangles according Yo either
their sldes or their angles. _ -

»

. . ' qn t:i'isn'gle -ABC- all the angles are acute angles, and A ABC 'is called
\ UNE

an. acute triangle, also. ‘A EDF with "the obtuse angle EDF is called an obtﬁe
triangle.- One of the angles in A GHJ is & right angle and the trian%le is

. called a hgwtriangle. ' - - * .

Us:lng sides of a triangle for. classiﬁcation, we Bay that 42 none of the
sides of a triangle-are congruent, then %he triangle is scalene, - If two sides-

+ gruent, ‘then it ds e gzile.ters . ' - S 4 I AN
Some of the following. exereises are examples of trouble spots for stud.ents, R

but they ofteh enJoy trying to find & counter-exemple. The converse of a con-

ditional statement may - cause difficulties (see F.bcercise 16), 5 but here 1s-a

place vhere logical reasoning may be stressed to good adventage. S -..'"'_ S
‘ ) :\ . l' ' 3 o ,/ . ...
cladg Exercises T . . . ' -

11. Is it possible to have .

. &a. a scalene right triangle?\ A o T B .

b. an isosceles’right triangle? o o : R
i+ an equilateral right triangle? - 7 R

-~~~ 4. an isosceles -obthse-triengle? R -
‘e. ‘an equilateral obtuse triangle? i ¥ —

e, o« ¢
1, If a triengle is equilsteral, is #t also isosceles?
.15, Is the converse of the statet.nent in Exercise 14 true? S- :
’ ’ - . - L]
» ) . ) ’ o -

13-9



v e .

-

“In Chapter ll, nages were glven to certein pairs of angles formed. when
two li‘gxes are cut by a transversal, namely, corresponding angles and alternate
. » interior angles. The SMSG text, Mathematics for Junior’ High School,-Volume I,

‘very, effectively leads students through a discovery of the relatiomnship between
.. corresponding ahgles and shows that when parallel lines are cut by a tfhnsver-
. sal, ‘the correspb{xj angles are congrient. L

In the figure above, 7, and .r, are parallel (1.es, ry 4] T, = $), and

-t i‘ s'a transversal. _ .
'\ The two ‘angles in each pair of corresponding angles are congruent and
hence equal in measure. Thus, we may write:

."\ [as[_e L _ | m([a),

’ = m(fe)

e ‘ TS
Lo [c 2 [g . m(/c) = m(/g)
Ld._f‘- [ . -m(fa) = m([h)

_ We will not 8o through this development but will list this property and
. _-.’.,'. - two othirs which will be u\s? in a subsequent geometric proof.

- I. Vertical apg es “formed by two intersecting lines

k4
are congruent,

II. Two lines in the same plane and intersected by a _
transversal are parallel if and only if a pair = . : 1

. o of corresp‘onding angles are coqgment. ¢

Let us now preve, through a clags exercise, the following statement about
triangles: “ - ) .
. . The-sum of the measures, ln flegrees,

of the angles of any triangle is 180.

e

_.-G | - .' ) 1‘1,.02914

L4



The proof is based on the property that if a set of angles and their interiors.
form & half-plane and 1ts boundary, then the sum of the measures off¥the angles .
"1s 180. ' . R . “’A o

Class Exercise‘ - T ) .

. ~

" 16. Consider -the - A ABC and AP and B3, B 1s drewn through poipsT so

ST et ulfy) = w(y).

) ‘Q B :
,‘ . Answer thé questions and use a property to expla/ﬂi\ukw" for each of the .
- _ ‘following. : , - . 3
L B Is T@ parallel to AB? C 7 Why?

4

b. .What name is- given to the pair of angles. marked _
x ad x' ? Is m([_x) = m(/x")? o Wyt

“c.  What name is glven to 'thé- pair of angles marked
.z amd z'? Is ‘m(/z) = m

.d'e . m(b’) = m([y')
e u(/x) '+.m(Ly) + u(/z) = m(/
£, n(/x) + ulfy) + m(Lz) is ‘the s

iyt
. Wy ?
Tayt) + m(/z')  Wy?

of the measures /\

of the angles of jhé triangle. - Why? .
. C g m(/x?) + mlfy') +m(/z Why?
L h.  w(/x) + n(fy) + ufz) = 180 - - e

: 'i.- We conclude therefore that th_é sum of the measures, ~.
in degrees; of the. angles of the triangle is-180.




A formal proof of a geometric theorem, usually appearing in tenth year )
geometry texts, hed just been developed. waeVer, it is important to ‘note .
thet this should ngt be done with seventh 3raders unless a great deal of ground-
work is laid and an intuitive development of these properties has occurred.
Students need to»measuxe and find the sums of the mdasures of the~angles of
many triangles. They. should cut off twé angles of a paper model of a triangu-

. lar region and place them beside the third angle and see that the three angles
" and their intexiors seem to £i11 the half-plene. Als; before these properties '
R . X gan be used as reasons in a proof the pupils have to state them in precise
' mathemaffcal languAge and understand fully what they mean. s

In this section we have not stated many of the. properties of ‘geometric
figures, and we have not given a definition of _mwany of the common polygons. °,
Some of these are left for you as class exercises and chapter problems. As
with much of the mathematics presented at the junior high level, ge?metric
concepts can best be developed by having students use paper-and pencil as they
read and listen, by letting them construct models,.and by the teacher asking

" leading questions. On the other hand, much of mathematics is quite dbstract,
_ and the students need tq be led toward fthese abstractions as they progress
“through the Junior high schooi years.

.

' Class Exercised g~g : _ L
¢ © 17. Given a line -r and a point ‘P not on the line, define the shortest
segment from P to T.

18. . Define vhat'you think is meant by the distance between two parallel lines.

19. In Chapter 11 a parallelogram was defined, but a rectangle could not be
_ v ,

defined. Why not?

ected by & trans-

20. Prove: If two. parallel lines, Zl and 2.4
' versal,,t, .Yhen a pair of alternaffe interior angles, [c and .
/£, are congruent, (Hint: Use Prdperties I and II as stated in

this section.) ' i Lo < i

e 12.5 Circles

_One of thermost common'simple'ciosed curves is the circle, yet in the
chapters on nonmetric.geometry we were not able to give a definition of a
circle. Why not? Tﬁe reason is that we need the concept of distence and
measurementpto define a_circle. From the primitive i8ea that a circle is .

——
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" und " through the idea that 1% 18 the set of points .at & éixed dis%ance
from a given point, students may develop the i‘(llowing definition.

. . " A.cirele is a simple closed curve in o :
IR " a plane, each _of whose points is the.same
' ‘distance froma fixed point in ‘the same

1
1w

‘plane called the center.. . i

%w' we repéat again that the definitions stated in',this ‘section are in-
. ;cluded only for ~comp'leteness and handj reference. ﬁoWever, some of thése
'might refresh our memory, as they certainly are new ‘to many, oi‘ the ‘more recen‘c
'Juniorhighsc olprograms. oy e .
,. “In the figure below, point ‘P is called the center; but by definition,
the center is not part of the circle. 'l‘he segment PL. is called a radius of
“the circle and is deﬁned as any segment which joins the center P toa point '
on the circle. The word "radius" is sometimes used .to mean the distance’ from .
) the center to W point on the circle. Usage will generally indicate the

: eorrect interpretation for the word. ’ s
h - :

C e . : .
A diameter of a circle is a segment tha ~s/contains the .center ,of the circle .

and whose endpoinbs lie on. the circle. _'J.‘he, relationship between the radius and

the diameter of a circle ‘can be expressed as:

¢

. d=2r,~or r=§d. . . . .

PR A%,
2 N N o
£2 - “rg\h

_ . vial relationship, but 1t is i’mpo‘rtant a'little later in
our develoPmen’o' of. ﬁreas vof circular closed: regions. ’

-

. . Certain bthér sets of points often associated with a circle may be men-
" tioned. )

B
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In. the figure above, line\£ tontains exactly one point of the circle and is
called a tangent to circle P; The intersection of the circle and the tangent
s point T, called the point of tangenql The endpoints of segment AB are
“%on the circle, and AB is said to be a gpggg of the circle. By this- defini-
tion is a diameter also a ‘chord¥ - '

N o
In qaepter 10, separations of lines, planes, and space were discussed. A

point.separates a line into tliree subsets:: _the two half-lines and the point

itself. A line separates a plané into  threé subsets: the two half-planes-and ‘

the set of points on the line. ﬁescrioe how & planefseparates space into three .
" gubsets. - " N L "' . '

. . ]

" Does a circle separate a plane into three subsets? Yes, the -three set2~
are the interior regipn, the set of points on the circle: itself, and -the ex- .. |
terior region. Does a single point on a circle:* separate the circle into three '

’ subsets? Does point X for example, separate the circle belpq into three sub-

sets? o . ' : : . S .\‘

13
' We see that whether'we_more in a clockwise or a counterclockwise direc~
tion, we will eventually return to X. Therefore, a single point[separates a
-eircle into only two subsets, unlike the situatiou with the line. _
B Just as we considered parts of llnes called line segments, We will consider
parys of circles called ares. . . ' (‘ ¢ y

,"

- . ’ ’ ‘,,,.Y
e .

N - .
" In jMe drawing abave, the circle is separated into four parts, or subsets,‘
. the two points X .and Y and the two arcs determined by them. If no ambi gu-

ity results, we usyally consider the "shorter" of the two arcs and .;ame it XY.
£

- - ’
- . )
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';;:ure to the right.' We 'ma§~hcsw -sp.eak of. T 4
-+ ERY without. ambiguity. = o N
f;;u ' In working with arcs we often’ wish to compare them Just ;E we compare
. lengths of line segments or measures of angles. Think of a circle divided into
) 360 congruent‘arcs. Each such arc determ:jis a unit of arc measure called One

-m degree of arc. qus from the center of the circle, passing through e end- .
'points of an arc, .determine-a central angle. We may think of a degree of are ;

. as being determined by a central angle which is a unit angle of one degree.
- as | et ! . 1gle . le of one

TR - .
. w., e )
° B

._’.

P
& s

LY

In the figure above, if the measure of central angle [ACB, in degrees, is
70 then the measure of Aﬁﬁ in: degrees 1s also .70, written: m(fKB) =
Remembe that arc measure is not a measure of length. For example, consider
the two concentric circles belok: - : o -

. xb - 2 . .
The twd arcs ARB and DSE have the same central angle, ZGPHn There-
ffo e, ARB and DSE must have the same arc measure, even*though the "lengtn"
’%of ARB is shorter than the "length" of DSE. The 1ength of a circle is called

4’

,\dﬁd compasses for drawina.figures and measuring. Althiough mathematics .
Eot a‘bdurse in which drafting should be taught, it is essential that stu-

dents receive spge instructjon and practice in the use of these devices.
. * . T .. - y .‘- . . .

\;:: '\-_“‘ 7 \r a o 1 4
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Class Exerciges*

. 2l. Two meanings were gliven. to ‘the word "radius.” What are the two meanings
. of the word, "diameter?" :
¢;i S , 22. Define diameter in terms of a chord. ’ T :

¢ [} . ‘ '.._

. 23. Draw a circle and an’ angle in the aame plane so that thelr intexrsection

- consiets of: a. 1 point, b. 2 points, c.. 3 points, -
. - ‘ . . oAb points', - ‘e. " nNO poin‘bs- . . .
35 24, Describe the interior of a circle using the concept of distance.
-'25L . How many degrees in a quarter of a circle? in one-eighth of a circle?
° in five-sixths of a circle? '
'26.._Given two concentric circles, demonstrate a one-to-one correspondence
— " between the points in AMB and the points in - EWD.
. . . .
§ 4 ' 7.
. | .
I [ ] .
"...
. B . N Y L. . ¢ J - ' - "
12.6 Conclusion o o ST .

‘This chapter has- attempted to extend nonmbtric“geome%ry’by;deVeloping the
concepts of congruence, the.nature of measurement, and a brief dlscussion of.
circles. In the next chapter we will continue this discussion on the metric
properties of sets of points by examining perimeters, areae, volumes, and

- .systems’ of measures., ' ’

Sometimdg. the intuitive and measurement aspegts of geometry'become bogged 7

hat this be avolded. Students \

as before they can state them

" down 4in a dictionary approach. It is importa

develop nonverbal awareness of many of these
formally Through discovery they see relatio hips in sets of points, and
'their intereat and enjoyment in understandin this kind of materiel is aroused.




Chapxer Exercises : .
: - ' : o '; E
ﬂql’:; Drav a segment 2 inches lons and> divide it. so that it can be used as a
-.'_” rulpr 1o show a precision of one-eighitLjﬁTTr-—"” ' '

.ﬁ 2, Drava segment 2 inches lona and divide it so it can be used as a ruler
" %o show & greatest possible error of qne-eighxh inch.

%3. A rectangle has a length of 5 inches and a width of 31 inches.' Each
"]measurement is given with 8’ precision of % inch.

. a.: Draw a rectangle usiﬁé the longest possible segments ‘that heve these

' 1zi) . 'measurements. '.- o o :

. _b._' In;the interior ‘'of the rectangle in (a) draw another rectangle that

AT

7
i

i

.has the shortest possible segments with these measurements.

'_h.,_ Néme as many special kinds of quadrilaterals as you ean._ o ;
4 ’ .

%,

5.- What do. you- think is meant by a reggla polygon?

6# - -What condition(s) are necessary ‘and sufficient for two circles to be
;bongruent? L B o _ o -

7. .Given a circle and a tangent to the circle.- What do you think the rela-
' tionship is between the tangent and the line which Joins.the center of
\‘the circle to the point of tangency? -, /_ ' '

383 Draw two arcs vhose degree measures are each. 60 but such that one seems
to be twice the length of -the other. What seqes to be true about the
radii of the circles that contain these arcs? . '

“

'"9. Define a spheres

107 We proved thst the sum of the degree measures of the angles of a triangle
.+ was 180. If a "triangle" 1g drawn on the surface oT ‘a sphere, is this
8t111 true? Give a definitiOn of a triangle on a sphere.g What is a

" "right triangle" on a sphere? . - i
[ ] . *.
———— . bt P
o e ( . '
. 'Y [y t
.. ... l ) ...
\ : '/ *a _ ' - .
S » ’ 5 _//;( L
- ] v ) Lo ‘ \
~ M .
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o Answers for Class Exercises
L 1. .AABCSAEC

6 2 ¢ | /_a [D

'.Ee'ﬁc‘- LACB [_ECD
’ w\\ 2. _[XYZ = [?QR No. The sides of an angle are rays and have no: lengths.
3. Yes. Reasons vill vary.. - (A" formal - proof is not required, but intuitive

reasoning by testing several cases will show that. this seells to bé true )
Mo,

<

The angles of these triangles are con-

- gruent respectively, but the triangles
' _are not congruent '

. They are called
g similar. '
UM "N R 8
B T o Coaw 1m e '
w0 s, 5% and 5%, 3 - |
. ' - ) ’ 11 ~ 6 o~ .
R 6.- a. - AC = 16 ° AB ® 3‘3 ’ ) ?E ¥ 2'126
. : ' A 11 1. .
B | M =zi, MB-= 3?*32’ ‘226132
: " b. ‘The greatest possible error of the sum will be three times the.great-
R est possible error of the length of any one side. )
N R : _
- T. ) Measure (\ Unit ' .
- - . __..__. ) lgnmg— v A 7
78- . : ) 3 | . - fé_ .. - . <,
~ | b'-. . 17 p(; ﬁ \ ) -
o~ ‘Ce o ~- '2\)+ s hour - L . .
} a. - 16 ounce C v
v . . '
8. a.. m(/AKB)=20 - = f.  w(/BKE) » 70
~b.* m(/FKE) » 90 sg. . m(/ 100
. e, m{/akc) = 170 h.  m(/HKD
~ o d. - u(/FKG) = 60. i.  u(/DKB) = 50
e. u(/AkD)= 70 3. m(/HKC) *
) ’fﬁ -19: _1£ney are perpendicular. - 10, They are perpendiquler.
115 a. Yes : b. Yes c. No d. Yes: . No.
‘ff{”- - lé.: They ere conéruent.
. 13 They are congruent.
o 302] 4
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14, Yes - - a - . 15. No ' N
.16. a. Yes, by Property I1.. Vo . » -
ne b. Corresponding angles.” Yes. If 2 angles are‘congruent, thef!}?
.measures are equal. S R S , - :
c. - Vartical-angles. Yes..-Vertical“gngies are congruent, and their
' measures are equai}_ =T Lo
d. Were drawn so as to have equal measures. .. L,

e. The measures~in the sum on the left are equal to the measures

in the sum on the right. ) ey N
. By-definition of “sum." . o, '
- Property III._ N

h. Two names for the same number as indicated in steps (e) and (g)
o r’
17 The shortest segment from a point P to a line r. is the segment

' from P perpendicular'to r. *

1 18. The distance between two parallel lines may be described as the length
) ~

of any segment contained in a line perpendicui&r to the two lines, and
‘having an endpoint on each of the 1ines. >

19;_ The definition of a rectangle depends on the use of a Fght angle which

was not defidd until angle measure was discussed. ¢
) hY -

'20. Given: and transversal t.

.. Prove: - _ “"__ .d
’ -1 because .of Property lI.
S flp £ Z? because of Property II.

c. n(/c) = m(/b) = m(/f) because congruent angles have equal measures.
- de . [c'% [f because angles with equal measures are congruent.

.~ e. Hence ¥r two parallel lines are cut by transversal, a pair ofg o

" abternate intetrior angles are congruent. T R

21. "Diameter' can be - used to refer to the le ggth of a line segment joining
two points of a circle and containing the center of the circle. "Diameter"
"can also refer tao the line segment itself which contains the center and

has endpoints on the circle.

22 A diameter is a chord which passes through the center of gcircle

.

.'. . >
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S - .
23. One possible answer is given for each case: ’ .
; : -‘ . _ . '._' ' . E
-*‘ a.. . . R ' . .bC . r: N c’
-
.
h ¢ _'l
. -. ’.’~
. R ~
M IS e ¢ / - [
+ : ' /
~ 2h'¢‘> The interior 1s the setfof all points X such that PX < FR, where /P -«
_ 18 the center of tl;e circle. . o _ -
- ‘s . p ’ ’ e n .
5. 90, " h‘s-,,. 300 A o S AN
. 26. Corresponding points msy be determined in the following wmanner: :Select
. _ any point.on AB. Drav a ray from 0 through that point. -The ray .
passes through a corresponding point on CND.- This may be d,one using
. polnts on either arc, and fo¥ any point on either arc a correspond.ing
point on the other arc may be determined. This est,ablishes a one-to-one -
- 'cémeswnden?:e between the two sets of points. . P
Phatd . . 1] v
- E -~ ‘
” .{_;,,_2' » \
X
N v . \ T
. 1 - . ) ‘
e La '
S \
\ b M \
le . _f . AN \-\
. . . l 5’) « . , \
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Introduct ion E

Tbis chapter is aleontinuation of Chapter 12 in that we ddscuss the
use of measuiement in. finding perimeters , areas, and volumes. Although '
there are several ways of approaching Operations on numbers reprpsenting

__measurements, we have chosen a fairly traditi 6l one as described in the
:-__._.i'irst section. . . -."" o \ . _‘
‘ An attempt is made to point out difficulties that studenté'encounter
' : _"in dealing with such topics. as 'the approkimate nature of measurement as it
. relates” to pei‘imeters, _areas ’ and voTumes » the number u,-. and the ‘relation-
. ships between the various geometric figures. For example » the concept of - '0’. o7
. .'area 1is approached by discussing the. closed rectanguler region, then relating -
" areas of the regions of other simple closed curves to this. \ .
: _:*-—A brief discussion of other units ofgpeasure relating to weight and .
5 :'time along with some ‘of the problems that students may encounter in their

5 T
'future studies o:t' mathematics and’ science, will end this \shapter. I -

. k] ) . . . - L) . N

-t ’ ’ ' - . ' : ’ S - . ’ : R

13 1 Operat\-_ons withN Ts of Measure. . v

. ' Binary operations on numbers have been defined in Chapter 6 but how
'may we hefine en Gperation on the so called-"denominete" fiumbens? - This has

-
L4

“ not really bothered us very much, but students sometimes encounter trouble
both in operating arith these numbers and in converting from one unit to . -
' _enother. Therefore, we, need to consider ‘these asPects briefly. _ o
, -If ve. have 3 yards o:f' ribbon and- 2 yards of ribbon, how'do we fimd
A the,,tutal combined length? We know how to add numbers , but "addiqg lengths"
¢ is something different,p 'We could saf’ we have two segments of 3 yards and
5‘2 yards, respectively, laid end to end so that they have Just one point in
. common. Then we get a segment whose measure, in yards, is 5 and whose
length is 5 yards. - v S ’ e' ' .o
Let us reemphasize our. terminologr Recall that in a phrase such as _
"3 yards is the length", we said "3 is the meesure”. The measure refers

; P
‘@ 10 the number 3. (The -unit.of messure is the yard.) Now %e can apply !

’

v arithmetic operations such as addition to ‘these numbers called measures. } vﬁs ‘

.+ If we “have 3 yards of ribbon and 2 more yards of ribbon, then we have
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‘5 yards of ribbon altogether, because the sum of their measures is 5 o
"(3+2-5) SRR _
’ However,‘(e mast.be very careful here. For example, it makes no sense

to attempt to find the sum of .35 ‘and: 17 Af° 35 is the degree measure of.
N .'an angle apd. 17 1s the inch measure of a line segment. We need to expand
}“ L I_ the Comparison Property of qpapter 12 which said that two- continuous geometric
| " “'figures or sets of the seme kind mey be compared as to size. .Let. us further .

-

‘agree, then, that'when we operate on tWwo numbers of measure, that they rep-
" resent the same 'kind of measurement", with the- seme unit. You have already Ry
tacitly assumed this when: you did .some of the. exercises in Chapter 3. .o
.« In the British American system of .units there is & hod‘ptpodge of stan- )
- dard units. As an exemple, 2 feet, 2k inches, and . %; yards arejall
" names for the same length and we may use ‘the symbol "=" to -show this: _
‘2 feet = 2 inches = -g-yard. Also the intefrelstion smong the: units is
.capricidusi 12~inches maké‘a'foot, 3 et make & yard, 1760 yards make
. a.mile. ' | - . . f
;i | - It is: important that students be able to change a measuremeqt frém onT
_unit~to another, 8o they must know the relationships among ‘the units. g?af-
urements in differentrunits but. treated as if they were in the same unit i
are often the basis for errors. In other words, reading the names of units _
as-well as the nusber of these-units, using common_sense to‘determine.whic ",#
" ig the best unit %6 use for a particular problem, and being aware thet \
L _operations are performed on the numbers need to be etressed with.students.
As we stated earlier, most scientists and most of the non-English '¢\
_ speakinﬁicountries of thé. world use the metric gystem of measurement. Even -
- " . our units are now defined in terms of the metric system, and most rulers
" " that children use in. school today are graduated in both inches' and‘centimetera.
QSur common units were originally based on body measures and developed -
,, " .over a "long period of time, whereas the metric system was arbitrarily made‘
" » "by man with no relation to hik body However, it was related to_ our base
ten system of numeration, which ailows us to handle such measurements quite
easily% lLet us compare base ten with the metric.system.

)

,.-,_ - . 7
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- ,
» . - Once students understand the prefixes and how the metrie system is

*" these measured gquentities.

 and the sum of the numbersifound_dﬁdte-easily by the base ten addition
' '7 a}gorithm. _ » ' :

" Length |

s the same length as

"tnat tfme prefixes

. the sum of L4 dekameters

) "drag .

_ ‘Weight "+ Volume _
‘Thousand 1000 = 100" | kilometer kilogram kiloliter ]
. Hundred . 100 = 102- N Eectometer‘ -hectogram |~ hectoliter .
= S T : . Z . Co :
~Ten 4 10.=:10 'dekémeter .dekegram | dekaliter -.
_ One 1.210° °| . meter " gram liter
- Temth .‘O.l = 1_0'1 - decimeter . decigram . deciliter
Hundredth " | . . 0.0l = lO"2 " centimeter centigra.m | centiliter.
Thousandth 0 OOl lO -3 millimeter millig‘am- ‘milliliter .

In @ manner much li,ke our, decimal system of numeration, each\ﬁinear unit. .
is either ten«(or ) times as l".arge as the adjacent unit. Thus one - deJ@meter
lo meters. ’The same relationship holds for weight
‘ : K . . Lo . . . - 4

" The- prefixes designating positive powers of ten are adapted from the

and volume .o

Greek and the prei‘ixes designating negative powers of .ten are adapte,d from
“the Latin.
b . kilometers

6 centimetezjs. .

This system ,of units_ allows us to write .such'a phrase\ as:

7 hectometers 2 dekemeters 9 meters- 8 decimeters e
' 4729.86 meters. . It should be -noted

We included them for ’

in a'much simpler way:
"deka” and "hecto"

completeness. - . ™ ' e ' .

s i
are seldom used.

»

related to base ten, 1t thep -becomes a- simple matter fér them to compute with

For example , suppose we asked students to find -
* *
T meters -

<
‘.

6 meters 2 centimeters and

3 decimeters. 6 centimeters. This problem could be wrikten in this form:
- .. - » r
. . . . ’ Y h6.02 m, o . et -
s . . m. - : t ) A .
[ . P .‘n-,“:'.: . . L

e,

Students often think that using the metric system is & grind" or a
This is usually caused by too much emphasis being placed on trans-
lating‘ from this¢ system to the English system and not, spending enough time
in looking at the metric system in its own right.



.Class Exercises | L SR e N ‘

1. ' Divide 6. yards 2 feet 5 inches -by 11.
‘2. Divide 7 meters 6 decimeters b cchtimeters by 8.
. . '3.. 'Wnich of the .gbove problems is "emsier" to do? Wny? | SRR

G
,

- 13.2 Periﬁetérs and Circumference

“C . .The total lepgth of & simple ‘c‘];osed e is called its'perimeter. In _ Y
e the figures belov we may think of the peyimeter of’ eath Pigure as. being the .

i’distance an ant would have to crawl along the figure in order to return to
the seme- point fromlwhich he started. -

. s :7;
o - ' ] ' -
o Often students think that the perimeter of a.closed curve mEans something
C ke "p = 2( L+ w)', or "P =A4s",  or C = nd. These are just mathgpatical

senterices (formuzas) which state precisely a- recipe for dealing with the .num- o
bers used in certain geometric figures. These sentenges should be the end

o

rding to somé con-.
with the, concept
hey do ﬁtve diffi-

lengths of many closed curves, ani classifying them ac
.+ sistent pattern. Students usially ve .1itt1le difficul

. .\\\;,f\) of perimeter,'even though it 1s’ subtle. Often,_hoﬁever,
. culty with the approximate nature of measurement, "plﬂggi

T dendminate numbers.
- For.instance, let us consider the perimeter of & t¥iangle with si

18 inches each. A student has no trouble with what we mean by "perimeter"
but let us explore what might happen when. we ask him to find the perimeter

.

in different ways.

(A

¢
~
|
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The measure, in inches, of each side was given s lB  Mhis immed- . o o
;;_iately tells us thet it was measnred with . 3 ;inch precision and, thet the . L
o greeteet possible error"is -3 Therefore, ve een write'the length of _
. one side as (I& ", and the perimster can be. expressed as _ ".- I
h%- J%)" On the other hend suppose we- did not tell thn student the -
measures of the. sides, but asked hin. to measure éach side to the nearest half- . ,*
inch, then £1Ad ‘the perimeter. He woulﬂ report the sides as 1%- ineyes each . ..{;
‘and the perimeter as epproximeiely h— inches. If the sides are measured.to
*the nesrest inch, each would be reported as 1 dirch and the perimeter as -
___approximately 3 "inches. .. But 1f wé ask him o 1&y 8 string as closely as
- possible on the segments 80. ihat these segments are all "covered", then
,meesure the string to the nearest inch, we would expect him to say that the
‘ﬁ'perimeter is spproximately L'y Inches. Which one 18 more nearly correct? ° - .‘;//'
As we .saw in Section 2 -of -Chapter 12, the greatest possible error may be
" increased dramatically by eddition or- mmltiplicetion.. All this exaniple does - P f -
:i 18 to.point out the need again to lephcareful "groun@ rules" for measuring ' o
and approximations. : . RN Cw
Another common trouble spot in perimeter is computing the circumference
of & circle. One of the student's first contacts with irrational numbers
‘ :-occurs in.using . to find circumferences by the formulas C = nd or . .
€ = 2rr. They do not realize that,the symbol "x" represents an exact number, .
and thet if we wani togrepresent. such an irrational number' in decimal notation "
' then we may do so only approximately. One stete‘legislature even attempted

in 1897, to pass a law establishing the valle of n as two rational numbers,

?72- or. 3. 1h16 . .

* It is interesting to note that ‘the decimal expansion of . ot has been
. carried out to thousands of decimal mlaces by computers, even though mathe-
- maticians have long known that it is an irrational number. The fascination
of the expansion of = has intrigued people since the time of Archimedes '
and Pythagores, These long computations are probably of no practical value,'.
‘but the'computer has helped in an examination of the distribution‘of the
- digits in the expansicn of =. '

L ) 309 . ) .
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In actusl practice we often”uae the rational uumbers_.gg' or 3.14 ds ‘ﬁ-

& . :‘-::-. f , . .. .

. Most. seventh grade students have had experience in "elembntary school
_ - A

..with.comPuting an ‘spproximation to n .through finding -the ratio of the

1ength of..a piece of string laid around a circular obJject and the length of
the diameter of that obﬂect. A .variety of methodg are available for com-

puting approximate values of =x. Often ‘an infinite sgries is used o compute.
2K & An example of Qne of these series 183 .

x (1.l Ll J.,.i 1,11y,
T s.(a + 3) + 5(23 3 ) + -(25 35) 7(21’+ 37).+...._.. L

Alvalue -of 1 . correct to 55 places is given in the SMSG Mathematics for .

L4

The important point in this discussion is that. pobody has any control .

_over the value Qf n; it is en. irrational number. HQWever, we ﬁay approx-
-imate  n with rational numbers to any degree of accuracy we wish. We mey

,,thipk,of it as being squeezed.or bracketed;betweeh successive whole numbers,

" ‘then tehths;'then.hundredths, end so'on. - - o
S REIELE
ZEE .. 31<n<3.23 N e
A‘ 3.1h-<',(<3.15' _ ," p ‘
o

N o 3.141 < x. < 3.¥%2
1

approximations for =. . o

Questions usually arise with respect to h@w to u®e =n in computationms.
If the radius of a gircle is 10, then the circumference of the circle, f‘\ -

‘2n?, may be written in the form 20x, which is a perfectly good number. It

is the product of 20 -and =n. Numerically it is between 62 and 63;
62.83 correct,to 2, decimal places. For many practical purposes, a. sat-

2% or 3.14% as an approximation td =. fre say t

‘l1sfsctory answer for the circumference of.a circlegés usually found by using

£ 5 1is apprbximately
equal to 22 writing 8 22 or n = 3.14 . In working problems, how-

T? T '
ever, we often instruct youngsters to use one of these values in their com-
putetions, end it is 1egitimate to say in this case: "let =x = %? " -or

"Let 5 = 3.14". On the other hand, students in the junior high school = -

should get lots df practice in expressing answers in terms of = as well.

-

oo .
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::Clasﬁ;Exerciseé

. r -
-

_k. To five decimal places 1t 'is -3alhl59:._,Which is a closer approximation
to this: 3. xh or, 37 7. ) - s -

+ 5, State a mathematical sentence (formula) for the perimeter of each

..i;. : simple closed curve below: S S e Ef

I Rp——— _
. T ‘ _ _ A . v
" .
s 8 x
¢ N / L .
T r LN Ers
® ; - - '21’
) (@) |
. . - - - ) fe
. oty +3 e ey +1 .,
\ S . , )
T e o ’ )

.6.'. If a wire is strung around the equator of the earth 80 that 1t is ’
10" feet longer than the circupference of the earth how far above the
eéarth would it be? Assume that the equator is a circle and that the

wlre is the same distance above this cirele at all points. Use E%R .

for =x.

e l3 3 Areas
In discussing perimeters, we stated that students usually had little
. trouble with the concept of perimeter. This is not true of the concept of
erea. Ask most people what the "area of a rectangle" is, and they will
' probably say, "It 1s the length times width." Again it is certainly con-
venient that we 'can find areas of closed rgrtangular regions by multiplying
‘the number represedting the length end the number representing the width,
) but this in no way conveys any ldea of what area really is. Let us inves-
| tigate this matter ‘in this section. ‘
The term 'area" meens the meassure of the closed region of a simple
closed curve. In£Chapter 11, closed region was defined as being the union

-
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of a.simple closed'curve and its interior._ In choqsing unitsfof measure we
sgreed that our units ust be of the same kind as the set of points to be _
measured. Therefore, in order to measure ¢losed regions, we should choose ,":“
- some cdosed region ‘ag’ a unit. E : .“] . T . e -

We may pick any arbitrary shape for a standard unit of area. Studenta

.. may pproximate areas by using "units" of various shapes: cireles, triangles,

‘rectangles, hexagons, or even irregular shapes. This activity will help-

e students understand the concept of area and perhaps convince them that it

.

AT

is- only for convenience Jf communicatid n that we adapt,as a standsrd unit .
- cloged region whose ‘boundary is a’ square with each side being a standard
‘unit of length. All measurements of area are ‘then made by cOmparing against
.this- standard unit of area.,.

Students are confused when they hear statements like: '"Inches'times

,

“inches is squere inches, and “FEet timea feet is square feet." Remember,_ f
“dn dealing with numbers of measurement we agreed to operate on the numbers,

and that operating on the names of the units has no meaning whatsoever.

Even though we hear -these statements often, and they are mnemonic devices,

we should probeably avoid ‘them with students. We call these units’ square

-~ incﬁes, square feet _or square cenfhmeters because: ‘their’ boundaries are. -

3 . : !

Let, us’ agree on an item that will save uf a little time end space

squares. v ‘.

.throughout the rest of this chapter. Me often. hear the phrase, 'area of &

rectangle .i'we previously defined arlea as the measure of a closed region..

A rectangle is not a closed regidn, even though it determines & closéd region.
Thus, the phrase,_ arees of a rectangle -is.meaningless. .What we really meean '
is the area of a closed rectangular region. However, this 18 quite a mouthfdl;

and we will agree to return to our mathematical slang" if no question of its
meanfng results. We use area of a rectangle to mean "area of the cloged

l_'

rectangular reQ@on
Why,then, can we find the area of a recténgle by multiplying . the number
‘representing the units of length and the number representing the . units of

© width? Let us look at a rectangle whose length is 5 gloops and whose
width is 3 giowvs. .- .

.D . - C
.3 gloops - i ™
) ‘_.
A 1 1 1 I B . ’
. ,D gloops _

312 &

j..'ly

-



AT

We choose a clg'seq, square region whose side has length of one gloop,
and call 1t a square glooP.

- )
- \Y:‘\'_ : ».
3 : o

1 square gloop - ' T
. . T - N .‘.’ .
_ Now how mahy of these congruent closed square regions are ~necessary
‘to completely cover the closed rectangular reg'ion? We see that, ‘15 are °
needed ahd. we ma.y state that the area of rectangle ABCD is 15 _square -

ElOOPB._ ', ' i e . ) ',..‘ o o “ .

‘2D _ - C

. . ' - ' . | N 2 L . . - 7‘ . . . . -
/A_.shortcut to obfbaining this area would be to consider this as a 3
by 5 a.rray and then £ind the: product of the numbers 3 and 5. This is

what we mean when we state-the mathemetical sentences A= lw, ‘or A= bh.
The symbols A, l, and w represent numbers, and the sentence A= [w

i states that some number A 1s the prod,uct -of 'bwo numbers, [ and w. Thus,

in our figure above, wé should whate thet the area of rectangle ABCD, *in
square gloops, is 15. '

Again, we have 1dealize this situaﬁion by ‘assigning the number 5 to
“the length and the number
_usually encounter parts of units and .either have to subdivide our unit or ;
consider fractional “parts/of units. .There is a large gap between the 1dealized,
situation “and the practifal situation that needs to be bridaed ca.'t'e:t‘1.1113r..L A
" simple closed curve drgim on an overhgad pro,jector and oVerlayed with grids
of different units hel},ps develop this concept of "area. -

" to the width. Practically, in measuring, we

‘We shoyld also c/onsider greatest possible error as it relstes to arga.
Think of p ically_.measuring tbe length and width of a rectangle with a
~ ruler whose precision is one-fourth inch, and obyeining approximate measure-

ments of' 3%— inches end relﬁ inches.
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* " We may write the length and width. in the forms,\ 3% g and” .

_" : 5

’ : 32%-:_%-. Observe thsx fhere 18 & largest rectangle and a smallest rec-
g . tangle bétween wmewour given rectangle will e, S S
. :.V - DI r" ------ ---———-——.-1 ’ 7 s, . \ . .
: - i - e
.- . || p=—m=—- T EE R
. [ I - “ B | $-
.-_, ‘ <« | '. . A | | . - . .
N B Tt - . .
0 N ] 1 | ] 1 . . .
| ] R
. D - 1 [ 1 | : . . ..
-.: '} \\.| : - - _... P -
v r , ! L.-_.......__._.__.___:.lf T, co e
.', ~ This may also be shown by a table: ' .
PR T - "Minimum - Measured . Maxipum -
- - .1 Rectangle - ‘|  Rectangle Rectangle
» | tength | Fwl | 3 | - 3fm
ol wan | g’ | g f 2gia | T
b g "135 540 | -589_ P
| dres '51’?" '132’26!5:* - %E‘ 1 / .
. uh . . L R
. 4 L .:TI&sqfin 'B%E'rsq in . 9%13;9«1 in | .
i - . : —— ———
_ From the teble we see that the ﬁessuredtares of the rectangle lies
between Th sq. n. and 96% sq.in. The errors ‘from the reported srea of
28 ' .
_ BEE sq.ip.- are 8q. in.: and .8q. 1n. :
: y ' The greatest ?ossible error fop this rectangle 1s thus EE sq. in.;
e and we can indicatq\the precision of the calculated area by writing: '

28
(SEE 5%) 8Q. in..
.~ “Usually we Just\fin&fthe calculated area and do not concern Ourselves
‘with the possible erﬁsr, but -in fields 1ike tool desihn end drafting, these

tolerances Often are very crttical. - I . _ u
i A '.'

. h . |
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) Only after the cOncepts of area., precision, and greatest / possibfe errat.
heve been established should students spend time o developing the fomulas
- for/ﬂnding areas Df simple closed curve regions. let us now show one o
:.".;' approach to tiféee formulas. We lgg,ve stated that the sentences , K= fw, .
l _or equivalently, A= bh,,- 'will help us find: the area of a closed rectangular T
- . region.: In th:l.s discussionlwe sha.ll usé the latter formula, where b is.
' ‘the measure of the length*and . h is the measure of the width of a recta.ngle.
' An attempt. will be mide to relate. the fomula\s of parallelogrems s triangles s
‘ trapezoiis, a.nd circles to this. :
/ . If we are given a ‘model of ‘a closed region repreaenting g parallelogram, L
then this model may be cut a.m{ reassembled in such & way so ag to make it L\ o .
' look like a closed rectangular region. See the figures below.

K

. It may be’ proved that the figure on the right ie. indeed a rectangle .
'# whose afea is given by the.produet bh. . Our Subdivisiodr Property, which.
' tells us the two areas are the same, now allows us to state that the formula
for thé area of the parellelogram }s also ‘given by the formula A bh.
| -Areas of trianglea, mey» now be related to aress of parallelograms. Think
. of amodel of any*closed triangul'ar region such’ as is pictured below.+ The ST
height of a triangle ixs defined .as bEing the length of the perpendicular '
from the ver‘cex T to the ‘base RS

Now consider another 'model, A R'S'T!, congruent to A RS’I“_, . and place 1t
in the position shown below. S

By . ‘

R 22N




N il

It can be proved that figure RSR'T ig'a pa.rallelogram, but we wi )/accep'b
this as beling true. Observe that the area of parallelogram RSR!T, A = bh, .
| ig twice as large as"c.he erea of the triangle. " Therefore, mey.state the -
formula for the area of ta closed triangular reglon as A= ? - .
" Moving on to ‘the. area of the closed region of & trapezoid., _we shall
need to add a 1ittle notation. A trapezold has two sides parallel, end L
.7 ‘both are often called bases. Let us cell the bases "..Dl' and By, as'in '
"3+ _the following medel._ ‘ : . T, .
: &

If another model. congruent to wxxz s made ‘and placed‘es in the die-
grem below, it is possible again to prove that the resulting figure is e
‘ peralle;.ogram. We will a'ccept this as trgé, ,also.. L )

a a“ U .

.' ¥ | . | i . - w . 'b i x " b2 Zl ) . . . ) "

-7 The area of this parallelogram ‘WZ'W'Z may 'be found as the product

‘ the height and base: As the length of: the hase may be expressed as Ib
. then the formulae for the area of the 1a.rger figure may be expressed as
- ‘ A= (‘b + bg)h. However, the two trapezoids were‘congruent and o er 1is

* gagain twice as 1arge as we wish. Therefore, the -formula to help us find the

| . earea of our original trapezoul nay be stated as: . .
. . . i - i . /
N . (b +b )h :
M . A = 2 * \ ~ ’
v
N
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‘The last formula that we will. develop hqfe is the one for the method of
computing the area of a closed circular region in terms of the radius of a

~ circle. There are several possible approaches, and many are discussed in
..SMSG Mathematics for Junior High School Volume I. We have sald that we

i vy

-, would elate. our formules £o the formula for the area of a rectangle. Let us

pursue tﬁis train of thought by trying to transform a model of a closed cir-

'~ . cular region into a model Gf“u“paraiielogram, then applying the- formula,.

'A-bho

Let us imagine drawing a large circle with several radii, -as shown
below, so that all the central angles are congruent. For convenience ve
choser "16 centraI“hngles. Note also that two semicircles are formed{

! Now imegine cutting-eround the ¢irdle, then cutting it in two, then

cutting along'the dotted lines. Eight of these Bngular portions should
look something. like this when'carefally laid out' . ..

- If both portions are cut in this manner andlfitted together, then we would

\

“have something like the figure below. ) oA .

k3

C o . . . .
'éhe upper and lower boundaries of the'completed pattern have a scalloped
appearance. If, in the same manner, we cut the circular region into smellér

and smaller slices, it would seem that the boundaries would'approach the

d
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' ,aﬁpea.range?;‘of the following figure:.._.

N

R .
se's L. : .
YA e . L . Y

But this :ls. a rectangle and the area may be found by thefsentence A'= bh! ’

. All we have to do is- determine the, measures the,t‘ correspond to? b and h. o
o Do you .ag__that {he measuré, of the base will be approximately one-half the
measure of the circumference} In the last section, ‘the relation #‘ the cir-
umrerence to the diame'Ber and the radius was stated as C= ‘xd or C =2nr. -

¢ half of the circumference tAen would be Just 7. Now, if we can state .

" . the height, h, in terms of the radisep we will hayp our proble;h solved. .

Notice, hoyeve_r, the measure o:E’

‘radius of our original circle.

- substitute "xx" for "b" and -
A A
. A

the, height is the seme a8 the measure of the.

‘Therefore, in the formula A = bh e may .,

"t fO:.r ~"h", ‘obtaining. - _' ’ .

L A

xXr * r

]

= xp.//:b.' S ‘ : - .

This is the Vell-khown formulsa for finding ‘the area of a circ&e. , Remember,
o " this has been strictly an intuitive approach that’ seems to suggest the. form- )

ula f?r the’ area oft a circle. Nowhere have we proved, that this is true. g e
We" shall leave the proef ;‘or later courses in mathematics.. '

We have developed a few of.

the more femiliar fogmulas for aréas. Many

other simple closed curved regions may be subditided into these commcn fiéures

so that their areas may be.computede This is.-not the only approech and these

fgmulas are not .the only ones; * there a}e many_ways to present these ideas.

We have taken a strictly intuitive approach, but students will enco.unter more

‘ so;phisticated, methods as the& continue their mathematics education. ,

e {1888 Exere ises  »

~

. In g*rectangle, does the le
width? Explain.

.How would you Justify the 8
for a cl osed square region?

19
. .

ngth always have to be longer than the -
Ky —_—

tatement, . A = 52-, as the area forgyle

Y

-
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~ 2 If a farmer has ;100. feet of fencipg, what.is the approximate area.
,"’ w of the largest garden'he may enclose with this fence? '
“ . J . S . .
. h . L e . -, - ., » ( B . - . - ) . o . . ,
" - ; . | f . | . . r/
. 13.4 MEasurement of Solids e .ot _ so i -,

"'- ‘ - The concept ofﬁolumes of solid regions is a bit more aifficult tha,p
~ that . of areas of plene regions primerily because students haye trouble vis-

T ualizingssolid regions vhen the diagrams of these are always in a.plane As .
vas suggested in Chapters .10 and 11, sketches énd models of sdlid figures
mede by the students'will ‘help them understand three dimensional space better.j

- . The use of. l-inch - cubical blocks to'"fill" a mbdel of a solid; models of
‘a cubic: foot "a-cubic yard, and so on, also enable~students to. ﬁicture the -

* volume concepts & little clearer..

A

.
.-

... - The discussion of'the previous section reletive to area also applies 4o’
:volume, end we will not spend much time ‘repeating many of these topics. In
other words, we shouid.proceed with students in a manner similar to the vay,

.in which‘linear, angular, end area’ measurements were developed. Let us
briefly mention these ideas agaiﬁf' ST

R, “Recall that we have said that, theoretically, 'a continuous quantity may
'_ : haNe an exact measure, but that practically it never does. For example, we

~‘are talking theoretically whén we say a segment has a length. We are talking
practically when_ye’/ay its length is a particular measure correct to a cer-

_tain number of places. We have also sald-that the set to be measured must

g unit angle to measure .angles, and a ungit closed region to measyre closed

negions. Similarly, we' need to chooseuQSMe'unit solid to measure~solids.

N ; . .let us peuse for a moment and gonsider our terminology. In Chapter 11,

' - we did not define right prisms because the ideas of congruence and _angle

s+ measures had not been discussed. A righ_ prig_ is a prism in which the lateral
' edges are perpendicular to the bases. All lateral.faces of a right prism are

. . . y
~ rectangular regions. - A right rectangular prism is a prism whose opposite

faces are congruent rectangular regions., The term right rectangular solid

, will refer to the set of points consieting of a right rectangular prism and..
fits interior. The volume of a particular solid is the number assigned to the
. ' amasu e of the space it occupies. we will usually speak of. the volume of a .
éﬁ* g ﬁ: {ctangular prism, by this we really mean the volume of the correspond-

'o id. In other words, the volume is associated with the solid and not

.wdth mhe surface which-bounds the solid.

. ) R U . 319
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be measured by scome unit of the same kind: a° unit segment to measure segments,
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' A cube may be - defined as a right rectangular prism whose.edges are all
. congruent. A cubical golid is the ustal choice for a unit of volume, and
through discussion with students, they soon realize that this is the pre-
.,ferred unit. E . - T -
Ii‘ we wished to find the measure of the surface of a solid this would
‘be called the surface area. Surface area will not be discussed here except

@ to sav'that. the areas of the faces of a solid figure may be found ag in the
" last section, then the sum of these areag would be the surface area of our
solid. - Students can often be helped in determining surface areas by opening
up" the paper models of the solids they have constructed. ’ '
Two other aspects that we discussed in detail previously and that should .
“be related to volume are the development of the standard formulas and the
greatest possible error. Let us’ consider the formulds first. The volume
- of a rectangular solid is measured by the number £ X w X h, where £,
weg and h represent the measures of length width and height in the same
| " “units. This may be expressed by the femiliar formula:

= fwh.,

‘Since the measure of the'area of the base 1s equal to o Lxw", ’we |
_ freqiently say. that the volume of a right rectangular prism is the product
~ of the area of its base by its height. Ietting B stand .for the measure of
“the area of the base, this vecomes: V = Bh.

The importance of developmg the oncep_t of volume. before the formulas
cannot be stressed too much. Students do not really need formulas, if they
understand the concept; they can always develop théir own recipes if ‘volume
is understood. The foimulas_state" in concise methematical, sentences how to

- deal with the numbers involved. '
Just:as the formulas for areas of closed regions were all related to

"the area of a rectangle, the

ormulas for certain other volumes could all be
related to ‘the volume of ight rectangular solid. We may first consider’ \

right prisms with different shaped bases and see that the volume is equal to ’
_the area of its base times its height: '

T

.
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may be thought of as a deck of cards which has been pushed into an obliqne -
-} ;position but still having the same volume as the corresponding right prism.
L It differs from a right prism in thaﬁ.izsblateral edges, while.still con-
. gruent are not,perpendicular to the bases. Also its lateral faces are not
-.-?necessarily rectangular. ) : B - - .

The onlj word of caution needed here is that we refer to the height of this .
oblique prism as the length of PQ, not the length of a lateral edge ff
The seme approach with slight- modification can be made to agply to

volumes of cylinders.

©  1In each case shown sbove, the vojume is_givenigﬁ the product of the area of
the base and the altitude. The right circular cylinder on the left has
volume given by V-= nrzh - where nr2 gives'the area of the base.
We may state in general that for any prism or cylinder, right or oblique{
V = Bh . ' : '

Formulas for volumes of solid regions bounded by pyramids, cones, and
spheres are more difficult to Justify in the way that we have been proceeding,

and these are not often developed'for seventh grade youngsters. We may,

o .. | I321 S |
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however, makeé tijé following relationship between pyremids and prisms, as well
as cones and cylinders, plausible by using hollow models and water or sand
to establlsh t eir relastive volwumes. By this method we can show that

for any pyramid or cone: ' V'= §-Bh

VStudy the figures below." ' .
' & . L ()

' . -

- s o .

‘r——.-q -

t’ 'l '.1
(&) The volume of a pyramid is One-third the volume of
’ a corresponding prism. .
e ~ (b) . The volume of a cone is. one-third the volume of a

corresponding cylinder.

_ The volume of & sphere may be related to the volumes of a cone ana &

- cylinder in the following manner. If the radius of a sphere is r, 'think

) of a right circular cone and a right circular cylinder each with the
same radius- r ‘and each with height equal to the diameter of the sphere, T
expressed as 2r. Consider hollow models of each as in the drawing below,

_

Now, if we asked students.to‘perform the- following experiment, certain
results would seem to be indidated. If the coge is filled with sand and thls_-x
sand is poured into the cylinde;,-we know from the preyious experiments, the
cylinder will be about one-third full. If the sphere is also filled with
sand end then emptied into the cylinder which 1is alreédy one-third full with
sdpd from the cone, the cylinder will appear to~be completely full. Several

trials will convince students that the volume of the sphere seems to be
two-thirds that of ?he cdrresponding'cylindeg:and twice that of the corres-
ponaing'cone. Siece'the,radius of the base of'the cylinder is r and its
‘height is 2r, the volume Bh is

- V ="(xr2) x (2r) .
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Therefore, the volume of the sﬁhere is
o 'V-—-—x(ur)x(er)
7 _or
. h 3 . to ) L]
V==rr . E ..

[ » *

From this experiment, we are fairly sure that V= %»nr3,:,but remember

that we still have not proved it. A physical measgurement! can not prove ‘a

mathemetidel idea, only suggest it and support it. We wiil leave‘the.fonmal...

prqof of this for a more sophigticated course in. mathematics .
The other aspect we mentioned -esrlier regarding greatest possible exrror

18 the last topic in. this section to be discussed. Recall thet we obeerved i
- that the multiplication of two numbers used in measurement quickly increased-,
the greatest possible error. The involvement of a third.number in.computing

volumes quite radically increases this ‘again. -A large amount of classroom
time probebly should not be spent on this toplc, and the use of" an overhead
projector will help accelerete the presentation and understanding of greetest
possible error &s. related to volumes. For example, -congider a right rectang-

_ ular prism measured with one-half inch precision with the following dimensions:

4'= 1053,;}, o= 3-;“;, cend - h = 5“1‘-.. A teble similar to

the one ueed for rectqhgles in the preceding gsection of this chapter could be
drawn .beforehand on the overhead projector and completed by the class. This

" method would show the development of the problem and is quite effective with

 students. Jﬂ; will not do the mechanics of the computation,_but the greatest

possible error in volume here is 27.89 cubic inches. This seems large for
the measurements originally mede to the nearest half-inch; but 1llustrates
the rapid increase possible in such calculations.

. Class Exercises ' ' o -

10. Suppose [ and w of a right rectangular prism\ere each
8 doubled and the lateral edge left unchanged. What is the
effect on the volume? t

1l. What is the effect on the volume when each of ‘Z, w, and ‘h of
a rectangular prism is doubled?

12. 'Thé sides of the square base of a pyramid are doubled and the
height,is halved. How is the volume affected? '

-

i
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'13. If a truck is called a 5 top truck when its capacity is 5 cubic

~ yards, then what is a truck called which has a body; 6 feet wide by
9 feet long by 5 feet high? ", ' .

h Compute the greatest possible error in the example given in the last
' paragraph if the measurements are made with one-quarter inch precision,

ie_.,_j—lOﬁ- 8-,_w-—3): 8" and h-—5‘t8'

7 -
.

13.5 Conclusion S

Several topics about geometry, both metric and nonmetric, ‘have -not

been mentioned in these Qast ‘few chapters, but not because they are unim-’

asured. Time, weight and mass, as well as other

'portant. We should HOtNLQ left with the impre\sion that' only lengths, angles,

areas, and volumes are
quantities,.couldrhave been presented here, too; but a discussion of one
topic like area was consldered in depth rather than lightly covering many
iQeas. Many definitions were not stated, either, but may be found in

”'SMSG Mathematics for Junior High School, Volume I. It is-hoped that the

presentation'here will furnish you withlmethods,of introducing these other
topics to students. Much of this material on measurement has always been
included even 'in the most traditional textbooks, but students often have

not really understood the concepts involved.

As you_haVE.probably observed, measurement is the vehicle by which

mathematics is related to the physical world, it is the langusge of science. -

Interesting examples of how mathematics-may be introduced through measurement
and scientific experiments may be found in the SMSG publication, Mathematics
Through Science. Students should find in this book some different approaches .

to the development of some of their mathematical concepts.
Scientific and engineering problems are requiring more and more precise
measurements and measuring deVioes, and new units of measure are invented to

meet these needs. For example, an angstrom is a unit.of length vwhich is

- one hundred millionth of a centimeter, and a micro-second is.a unit of time

which is a gillionth of a second. These units are very small. On the other .
hand, astronomers also need very large units such as the light year which is
the distance light travels in one year at _approximately 186 000 miles per
second. '
Students should remember that measurement is always approximate, and
answers are expressed.to the nearest unit, whatever unit is being used.
P _ o _ .
. iay

L. 3 .1__/!_) ‘
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Also, a decision must be mede by the. student as to which.unit is the most

appropriate.for any particular problem. Seventh grade youngsters -should

begin to heye some exposure to & few of the unfamiliar units of measure as

1.

9.
10.
11.
12.
13.

¢ 1k,

‘1.1t., 103 in.

Answers to Class Extercises

11 \
'The second problem is easier beceuse we can use the standard base ten
division algorithm immediately . %.
37 is & closer approximation to 14 than 3.14 _ i}
(a) P <hs "{(b) P=hbx+6 (c) P.= 2n(a+3) (d)' P =10y + &

The wire would be epbroximately‘ %% or 15% feet above the earth at

all pcints. The circumference of the earth can be representéd by C = 2rr.
It the circumference is increased by 10 ft. then the redius is increased

‘ by x ft. and we have _ * oo \.
- Lid R -0+ lO._=.2.n(r +X) . - -
But 1% . C +10 = 2rr + 2nx
:thus‘S S 10 =.2nx and’ X —‘ﬂgsg\;

It is interesting to‘note that the problem can be solved without ever
knowing the\radius or circumfererice of the earth. '

In everydey usage we think of.the'length as being longer than the width;

but it mekes no Qifferepce which is the length and which is the width
because this may be .interpreted as an application ¢f the commutative

property of multiplication.

Uslng the formula for the area of a rectangle' ‘A = [w, and realizing
that a square is a special kird of rectangle, allows us to substitute

s for both l d\ W

It is a closei_giz;g}ar region with an area of approximately 795 square ft.
The volume is U4 <Times as great. -
The volume is 8 times as great. ‘ -

The volume is twice as great.

It is a 10-ton truck. 3 , T .

13 gig or ‘l3r6h cut inches .

32_5..' 177
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. Chapter Exercises

The measures of the sides of a triafigle in inch units ‘are '17, 15, and 13.

(a) :What would be the measures of the sides i messured to the néarest’
T foot? . L~ o ’

.

- (b)- What is the measure of the perimeter in inches? In feet?  ,v
(e) How do you explain what seems to.be ‘an inconsistency?

“Which plane region has the greater area - a region bounded bj-a
' square:with & gide whose length'is‘ 3 inches or a'regicn bounded by

an equilateral triangle with a side whose length is 4 iriches?

Here is a problem which your students night’ do'-Take an ordinary

;'(a) Trace an outline, of it on a graph; paper grid. with unit

1 .
i) inch.i
'Estimate the area by using the grid._

'(b) Use thread ‘to represent the circumference and radius, measure

_ them on. tHe graph scale, and use them to- compute the area.
(¢) Compare the two reésults.

J(a) A;child measures a rectangular prism with a ruler whose unit 1s

.an inch obtains thesegmeasurements: length, 5 inches, width,
3 inchesnight, 6 inches... What is the volume? .
(b)_.The'same'prism*is_measured with a jruler whose unit is 0.1 inch.
" The length is now reported as'5.d, - the width as 3.4, and the

height aB 6 3 ~inches. What is the volume? 1:?.
(c) How do you explain the large discrepancy: in the answers to (é)
.and (b) 2 : N

-’

v

A cone has helght 12 feet snd'base a circle of grea 6_ square feet.
What is the height of a cylinder whose base and volume &re equal to
that of -the cone? "

e : '

Find the volume of a_ballbeafing whose radius is

The radius of an unopened tin can is. 2 -inch And the height is .

3 _ipckeed— . .. Y4 '

(a) What is the circumference of the base? .

(b) What is the volume of .the can? - _ ?

(c) What is the total surface area of the can? _ /
g ~ .o ' v
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(st 18 the smallest pbs'sibie-_ séasure of the true length?

, th?. Relght? o : - ‘

(b) ﬁh&t s the largest possible ‘measure of the true lleng'th? Width?
. Height? . . S '

(c) What 1s the smallest possible meas#re of the true [volune?

.(d.) What is the largest possible:measure of the true \xolume %

E (a) Consider a model of a square region with a side of 8 inches .
* ‘and cut - along the lines as in ‘the diagram below. Wha‘tx wvas the
aras of this square? : L L L T T c

. ., , . .
. ) ) - S s '-.\ -
R st | - .

| 3"
o 8"

. ‘(b) The pleces cyt from the squa:ré may be placed 80 as to form a
W

" 10.

rectbangle simila.r to the following. Wh.&t is the area of this
rectangle? : o ' ?. '

'-'13" .

Note: Stﬂents enjoy this problem a.nd invent several theories about
why this parado:c seems -to happen. ]

If the redius of a circle is doubied, what is the effect on the

circumference? What is the effect on the area? .
’ d
N .
(4
|
« |’
r
l o
!
. s
. * " )
o l *:'(‘\ -
A3,
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SR ‘Chapter 14
 DESCRIPTIVE STATISTICS AND PROBABILITY "

N

Introduction

3qéf: The gathering, summariziqg}ﬁﬁnd presenting of data is an important and

'..'eommon activitytoday. Informetivn is presented daily in various media by
:tables, charts, and grapha._ -A variety of descriptive terms are used to sum- -

—k

* marize large quantities of data. ‘While most people are not directly concerned
e with the preparation of‘such datd), exery educated person should have "'some

- _'ability to correctly interpret statietical data. For this reason descriptive,:
. statistics s’ introduced ‘at ‘the Junior high level. The main roints discussed -
f'here are graphing of data, and measures of central ‘tendentcy . and dispersion.

~—

. In each casge solving problems of this nature gives students an understanding
" and an ability to interpret informatipn more "clearly. Having, made .several
. broken line. grg%hs and bar charts, they find little difficulty in reading .
'.,and interpreting such graphs. ' ,; : ' ' ’

s

The- gathering of data may range from simple reference work such ‘ag _
1ooking up previously recorded infonmation, to the more sophisticated random .
'_f B pling procedures nsed in various types of quslity control. -Although we o
’ 11 not be concerned here with the problems of sampling, students are quick A

I

‘see some of the flaws inherent in different sampling methods and enjoy
di cussing this topic. Information for such wark is easily obtained. Student

ld

heighta, weights, distance from home, number of brothers and sisters, ages, N
. are alJ easily obtained énd lend themselves to statistical treatment,. . 1 5
’ \- . N ' - 3

lh 1 Graphing
. ) - -t
Having obtained a set-of datt by‘some means, we, are usually ‘confronted
. /with the task of organizing and preparing it for presentation. ‘Often, s€ts
B of data may he presented in table\form as the _example below. However, it
. 1is usually difficult to ebstract information from tebles. Graphs are gen- N
. .era.lly elea.rer, easier to read, and often show re,].ationships not readily - g

apparent iw a table. . . . o _ »
3
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Population Facts About the United States ~~ . - °

g . . ' . -, ' .

> N
_ . — — . -
. Census ° - ~ "Population in _- Increase. in Percent of
’ Years - Millions .. Miliioms . Increase.
T L 1800, . . 5.3 1. ©35.1
1810 - CT.2 1.9 36.4
-1820 9.6 2.4 3341
1830 12.9 . -3.3 33.5
1840 17.1 . 4,2 32.7
. © 1850 B3 6.1 35:9 P
L . 860 ‘31 8.2 356
T 1810 39.8 - 8.4 26.6 .
/.;/ o . . ‘. 1880 ’ N 50.2 . . 100h §726oo- ’
S \ "_.1890 62.9 - ‘12,7 5.5 -
\ 1910. . . . 92.0 16.0 21.0
B —\1920\. Co 105.7 - . 13.7 —IAK 1.
. 1930 122.8 TAT.L 16.1 ‘
, The broken-line 5ragh is a common way“bf picturing date. Such a grap
- _is made by first locaxing points on graph paper and then conneeting them ¢ nsec
utively witq line segments. The graph below shows the data in the teble
given previously. -Here it is easy to seg the changing rate of populetion
' increase, the decrease in rate during the .1930%'s, the population in the
e years labeled, as well €8 an approximation to the population at.any given time.
Students generally need help in the prelimlnary work which must be done a
. before eny actual grephing takes place. One of the biggest problems in_con- ”
‘struciing broken-line graﬁhs is deciding upon the. scale. How much each unit
space should represent 80 that the graph is of the appropriate size must be
decided Yefore anylpoints are put,on the paper. Some students will even need
: "step by step instructions as to how to decide on the scale tp be used. Such
. . directions as; "count the number of spaces availeble, divide into the largest
quantity to be shown on the graph paper, and round off to the next larger
unit," mey be necessary. . o . ;ff N
Bar graB are another way of represe g deta graphically and are also
relatively simple to construct. The sameﬂproblem of scaling occurs as in
drawing a broken-line graph. Qnce they have mastered the basic techniques,
_ students malnly need practice,in making neat, clearly labeled ‘raphs which
. display the desired information. =~ . _ o
. > . / R ) .. ° ) .
. . ' . 7
h o’ . v . . . ’ “z ¢ n{j . N . :
- : 330 . | ¢«
o, ° ’ -




160

»

130

.

PQPULATION OF THE UNTTED STATES

175 |

4790 - 1960

170

155 |

150

145 -

1ko

135

. S

4

5 ANENEENNE
£ *
[T
//L;_" *“““fi;.jm.q i
;| ! _ i
. / _ B

1790 1800

'30 LN (R 1900
A

OENSUS YEARS

331 .



- ’ - V '- . N .\

. ) ) Y . ° . .
‘Circle graphs are still a third typé of graph with which students must

. be familiar. Their preparation requires the use of a protractor and some
Aai. ) -'.. calculation as 1o the slze of angles needed in a particulqr,srapha “Ratio and
. proportion or percéht are usually needéd.. Thus t0 prepare a circle -graph of
.% -'” . thé data presented in the teble below we need to determine the size of each
angle. : . L e

Frult Preference for Lunch

- - R .

e —— : : o R
N _‘;k ¢ - . " Apples - P8i e,

‘Orepges - | 12

L Dours care | 28

Total . W8

’,';- @ } ’ .:- ._ . . . . L. ) . b
To do so we needoeither the’ percent or fractional part of the total- each
: observation represents. Both are given below.
' Frsctional. . R . _
Nunber:. Pagrt. " Percent - . Degreep
. : : : e . _ ) t
. Apples * 8 1/6 - 16 2/3 - 60
*  Orenges ~ , 12 - /b o 5 90
- Don't care .8 - 712 58 1/3 . .. 2w . - °.
. - Total .' X8 1 (\f7 100 - 360

In either case we see that an angle of 60° will represent the 8 votes

for apples, - since 5 of 360 is. 60 end 16 § percent of 360 iz . 60.

of counse all problems will not give such exact results but rounding off to

v 7 the neares} degree will usually be as accurate as necessary for most graphs.
- ° . N * - "'

Fruit Prefefence for Lunch

. - : ) -

c .




R e . .
./ - - ,
-~ - - ; ) \ .
* ’
. Coa . : . . [ .
'_'.Clas;-aercis'es ) A ' .
' Use the -figure below to answer questions 1-3 . s
: . ’ T ’ ST . > ".
ey 3
. . P . , A ]
) R
V. A
"\ ‘. ) *- .~-~ L LY
N T : ) : -
" '~ - . .

-1 ‘What percent of th‘!‘ circular‘region is region Al
S

2. How many degrees should be. imthe central angle if regionGis to be
' 3'( percent of the total area? = . \ /

"

- 3. If D is the same size as C how m{my degrees are in the central angle

ofregion B?, o ’. T - . e

> ® ' . : . e

4, Ma.ke a brokeg,x-line grapl “to ,show'a posgible trend in the 15 successive
- test scores given: 72, 80, 77, 05, 8h 1;’98, 75, 80, 100, 67, 7.

- 5+ Show the data in exercise - by means of a bgr graph,

-

. LI :
. T \ . . . . P
. : : ' -
- . ) o ) "
! . " . -

» : ) EEN

- -1h,2 Sumarizing Data - o o <

3

Althoagh informe,tion prgsented 1t¥graphica‘l foqrm is often easy %o under-
stand, we may want‘to know more about the data., Two questions which gene ly
arige are, "What is an average or ty'pical figure?" and, "How much do the

" observations differ from thi V,erage?." In the first question Me are looking
for a gle nqmber which can ke used{to represent all the data. In the

- ‘gecon question we are concerned with howﬁﬁhe various observations are dlS-

' tributed about this averagg. Some sets of observations are‘spread over a

mwide range while some may be very close together. The ‘terms used to answer

"the first ‘question are measures of central tendency. The terms used to -

6. !
J'Iathematicians bave thre‘e technical terms used to measure central ten-

.answer the second w&re measures of dispersion. B

. dency. They are mean, median, end mode. Each of the three gives & number

, -
which in somevsense may werve tp represent gll the data. Unfortunately
\. N _ ) h ‘ '
. . 333 -
> AP A

.
”
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each is associated with the word "average _ - .
. ‘The 'meen or arithmetic mean.is what most: “people generally t*hink en
f_ , they use the word "average The mean of a group of numerical obse ions is
L L ca,lcula.ted by adding all the observations and. dividing that sum by the num,ber
?1;'_‘ . v of observa.tions. -Consider a “small company of ‘nine employees with ‘salaries
| R - ag shown belowt )Ad_.ding the_salaries ané di\_riding by nine givek a mean salary
St Tewer gqugooons T T e
o l ; L. % § 15,000 (President) TS
ST e R -t 35,.00.0 '-\(Son-'in--law) B / )
.‘,‘ R IR ..1_0,00:0 . (Vic'e-president).‘ . T o . -
T T e - 7 9,000 (\Custodians'-‘ ° . -
Gt e 7000 - (ffreasurer) - \ BN
P R “ o .' | 6,000 ;(Designef) - ' '
S . ) e . ‘ B,QQG'. ) (Sa.les,man) .
. h " , , 5,000° ' -(Saﬁ.esman)-. RS
. . ' 1&',,'000\. (Productmn) . . :

Y

Although the mean . is.frequent]'.y used at tJ.mes 1t may Yoe misleading. “In
attgmpting to recruit -a new employee to ‘qhe -company >, 1t wes pointed out that g
_the "average" salar¥ in ‘the compeny’was $14,000 . It is true that this is
‘the mean salary, and' the average of $ll& 000 does in a way represent all
‘the data. -On the other ha.nd it seems misleading ghd we are not- comi‘orta.ble
e .‘with' it since seven of the rfine salaries are less than this average salary

This is one characteristic.of the mean. It is sensitive to observgtions such
“+ as the .president's salary, which differ mafrkedly from the others. o
o *_' v Another type of a.verage“, ‘not affected by a few observations which deviate '
_ ] -_ w markeclly from the others, is he media.n. N < . .
A B The median' is def:Lned to be the middle number when data is ordered withr
) | 'respect to’ size.( If there 1s no midile number, as is the case when the total
e set conbains ‘an even;xumber of elements, then, the median is the axithmetic
: L me@ of the tw? middle numbers. Thus, in the exemple above , $7,000 is the
‘ o &edian salary.. This . seems to be a more signifqlcant figure’ than the*mean in
_ " this tase, since now half the salaries are. ﬁlgher (or .equal), and half the
;;.u\ - salaries are 1ower (or equal) You recognize the median as the 50th per-
"" N &entile, 8 tem used in reporti g test data. Notice that the median would
LR L® f remain Unchanged. even ir: the, P}"e ident?s, salary Were dqubled while_tke
s ) ', dlean woulﬁ: changed sharply- t(f $1‘9,000. We"should fot’ fault-the megn for .
- being affected by,individual observations, it may bg that th1s is the exact )

A po:Lnt we..wish to e”?nphas:.ze.

' o Ce e~ v . . P\ .-'. ';."
T lﬁ“)- gt

- N, < DS 3 . 4

. * . . . . .
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" Still another mesy wre of centrsl tendency s the mode. The mode’ is .

defined to be the num en J.rhich occurs most often in a group of .observations.
Using our- previous example, wes see ‘the mode to be $5,000", Occasionally,
.8 set of" da‘eé_ will have more than one mode. . . o o

- These'threé measures, mesan,. media.n, and mode, " are 411 used at times

to. d.escrlbe central’ _tenden_cy. Any time referenc:e 1s made to an average we '
‘must understand what‘measure is being ueed. Either careless or delibarfte -
misuse of thesg terms can'leedéto erroneous aonclueions. T%rs the saying,;
"Figures don't lie, but liars figure. -

C - It is impoftantqfor students’ to realize that very different sets of date
may have the same mgasure of central tendency. Consider a second company of

nine employees. Salaries for this compeny,, Company B, are'ldisted. with se.l-v )

-

aries of the pyevious company, 'Company A, for cOmperison. _

Conipaiy - A e Do .Company B & -
. . : -t ' _ N . .
= $ k5,000 © © - 19,000 . S
e : 35,000‘ Y e T 18,000 - " e . .
T o el
" ., : 9,000 - - , : -18,000 IR R
R fgomi'r'gf S ) y .
) L 6,000 © - 112,000 v
_ A _ | ‘.5,000.' L . v ll,OéO. - N
Jeole . 5000 .t Tt 10,000 a
e . © 4,000 o - _\‘__'_ . '.9,000 . .

Examining tle salaries as displayed in “ahula d, form shous a ve‘ry
'different salary structure, for instance the lowegt selary in Company B 1is

.3

v greate.r than the five lowest in Company A. On.t other\hand, both companies .« -

' have, the same mean sala.ry, $llt 000 . . 'An impo t difference between thesé
two situatlons is the difference between the highest an.d lowest salary in
e_ac'ﬂocase. In Company A this difference is $.1+‘l 000 whlle in Company. B
it is only $lO 000 . This number, the difference between the lergest and
* smallest number in a set of obs ions, is called the range. We see that

' e smaller the range the closeyr the individual. members of the set are to the. .
‘ge‘asures of central. tendency;” that i3, the closer they "elustez" about the

~ me@n. " The range then gives ﬁs some indication of hpw the- data is- distributed

! about the mean.. It is a measuré of dlspersion. — ' . -

t~

: Anptheréneasure ‘of dispersion is the éverage devia‘dioh fro;p the*meen.’
v Mverage de’viation is computed by finding 6he difference between eech Cg
’ ’ - - v . . :.. ' { ‘ ] ) » ’ \,

.'.‘. : . -335 _‘- e . k . .' . . ,"i '\ »,..
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number and the meen, and theh finding the mesn of these differerices. This

gives us "on the average" how much each.individuei observation deviates from

_ "the mean. , ' s s
{ let us refer again to.our companies, each with a mean of - $1h 000 and
e compute the average.deviations in each case.
Company Al ) Company B . N

. (mea‘ﬁ - :ilh,ooo) . : --Emeen g1k, 000N~ - - L
RS i o pevigiion'from.mean Sei;ry " Deviation from mean ’

. 31,00Q > 19,000 c 5,000 . IR

. 21,000 ¢ . 183000 .~ 4,000 -f.

. f- T‘ 4,000 0. 17,000 © . 3,000 -

g R . -5,000 \ . . 16,000 2. 2,000 - - ..
) . CTAT000 L L 15,000 § . . , 0
Y \ o 8,00Q. .. 12,000, S 2,000 7, .
| o 9000 o Faippor - oo

: ., 9,000 10000 ' . l)ooo
: . 0,000, . 9,000 . 5,000 .
0 o000 . S 28,000 | :
. . ‘ : ) A\‘/erageDeviatﬁon a o ~Average De:liation
.é ) . 411,544 (loféoOO)" : r 33,111 (28,800 .
AN . - , :
Here again the relative sizes of the average: deviations gives us infor- '
;g _).'- . mation -on the scatter of the data .about the mean. . gh other.measures

. of ‘central tendency are more. commonly used the aver e.d iation is easy .,
C. to computﬂ_and does give us an- indication of dispersion. .
R The range has the disadvantage that-it is nffected by individual obser-
N L vations, gnd thu\s may not always g.’_we‘a.n accurate picture ofgthe distrflbufcion.

The avérage deviation is less influended by dﬁy one observation and tmué . .
gives a better indication of the scatter of the data. ’
) ~ You are familiar w1t®he’r measures of disperswn such as st':.rand’érd
deviations and variance, but these Jre much more\dlfficult +to compute and “
. B _their 1nterpretation requires much more time then is generglly available in
! L grade .seven. ". ’ ' .. . '
- o i% ‘ ' '
: > vi . 1.
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Class Exercises . . : . °

Ty

.. 6. Find the mean, median and mode of the following observations: .

“(4,'5,5,5,5,6,8,8,10,10;12) . .. -

R "Wgat is the range of the above data? o ' ) _ o v

AN

"the possible outcomes of an experiment are equally l'

8. Find the average deviation from the mean for the distribution

in Exercise 6.

[4 . . o

1l+ 3 Probsbility ' e
“'The study of probability and its applications is an important part of

,many disciplines. Relatively simple ideas which can be expressed in terms
f,of c%;ns, cards, dice, and marbles in bags, have developed inta & powerful '
_ tool used in ‘a wide variety of greas. The methods of statistical inference
.Hdeveloped from tHe .1deas of probability are used in meking decisions in
‘uch" diVerse areas as medical research, quality control, and insurance. An

understanding of some of the~key idesds of probability should be part of every:

' aunior high school student's education.. These ideas are relatively wimple

to grasp and can be used to snswer a variety of questions about. chance events.

‘When we talk about the probability of some event occuring we are asking 2

* the question, "How many times .can we expke ‘an_event to occur in a given
'number of trials?" In the simple example oM a coin we see that when flipped
- in the air it can land fwo ways, either ﬁeads or tails. It.seems raésonable

that one outcome is Just as likely to occur as the other and we would expect -

R 0 ‘obtain about twenty-five.heads and twenty-five tails in, fifty trials. We -
weuld” say that the ratio of the number of heads to the number of trials is

‘1 2. Since this means that. about half the time we would get a head, we say .
. that the probability of getting a head is .i . The same reasonlng leads us to

2
expect a given number, say & 3, about one out, of six times when rolling an

ordinary die. We yould expect the' reétio of the number of threes to the #timber

' of rolls to be 1% 6° 1 Again we would say the probability of getting a

three is . 6 . Notice that in these cases only one of-the possible outcomes
cgn occur at a time and each appears equal

This idea leads ug to one of the basic notions of probability.’ If all.
ly,rtHEn we gy express -

.. the probability that an event E will occur as ‘ )

B
3
-t

S : P(E) =

v . ~

Lwm|ct

) -r o . : - 4

-' St S < 33T 182‘ _ . ‘." -, b
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where { 15 the number of bossible outcomes in which event E occurs, and
_ ) is the total number of possible outcomes. o
R Thus the probability of 2 head showing on-a- single toss of g coin is

a4 | e "P(H) =
) . ’ .
since, of the 2 possible, equally 1ikely outcomes (H and T), only 1 (H)

is a success. - . \ ¢ .
The progability of @ % showing on single roll of a die is

» R I OF

. since, of the * 6 possible,, equally likely outcomes'(l, 2, 3; 4, 5 and 6),
R only one (6) is & sulcess. , f
' What can we say about "the number g in the probability formula
: P(E)\; L If e _XEEX.possible outcome is considered a success, then t =

., ._g =1, and the probability of success is 1. If no outcome .is considered &
success, t = 0, g = 0, and the probability of success 1is 0. '
R o If an event A 1is certain to occur, then P(A) =
- g .If an-event B cannot occur, then P(B) = O . . i
Further,'we.may write . . .
i oPE) <1 . e
) As the probability changes E§o@ 0 toward 1, ~we become more and .
_ more certain of success.. ' ) : R '

. _f.i.\

- Example: What 1s the probabllity of drawin ' the four*ﬁf hearts from an

-

vordlnary deck of 52 playing cards?

Solution: Since out of 52 possible outcomes & success can occur in only

Y one way, the probability is "L . We essume each card hes an

52,

———— -— ——

equal chance of being drawn.

. Example: What is the probability of draswing an ace'from'the same deck of
o 52 playing cards? s ' _
Solution: Here we mey draw any one of the four aces so that & success may
* occur four ways out of the 52 possible outcomes. Thus the
‘o o : 1 )
probability of an ace is P(ace) = 55 = i3 -
. e ) - o. ' ~_ ’ “ .
' Class Exercises N -~ s

M +

. ‘
9. What,_ it the probability of gectbing ap even number in rolling an d?ﬁinary -
)

.

dié with six faces numbered 1, “y 3 L, 5, 61

‘10. s What is the probabillty of'gettlng a prime numbBer in roLlJng the die
in Problcm 9? 3. *

| . . _)_';U ’:l £y .
\)‘ C et '. [ | . J j ‘ EY 1 to-

~- 9
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5'l§."What 18 the probability of drawing a five from an ordinary deck of
52 playing cards? . ',.* f' .

- ‘lii' What .is the probability of draving a red five from an ordinary deck
S E of 52 cards? L . - T - "..'-¢

K oW ’ \

?Q - Since the probability of event: A is given by P(A) % R then the
probability of’ A not occurring will be given by .
e : lt ' .
. - . P(not n) = —. . .

(This is so,'because if A cen occur in t' ways, then it will fail to occur
-in. 8 - t ways ) But changing tde form of this fraction gives the following.

. .o g8 - 't -
: '__ o 7 P(not A) = -
AR ' st .
"8 8
=1-% .
. L P{not A) = 1 - P(A) . .

-Thereforelthe probability of‘anﬂevent not occurring is 1 minhus the'probabil-
ity of the. event occurring. "This seems necessary since we want the sum of the

probabilities for any particular situation to add to- 1. y
. - P(A) + P(not &) =

To answer many questions of probability we need a method of determining .
T all possible outcomes of certain ‘typeés of events.. One way of listing the

"’foutcomes is illustrated below,' Suppose we yish to enumerate the possible
" outcomes in flipping a pemny, nickel"and dime. The tyee dlagram below
ishows all rossible arrangements for the three coins.

Penky * " “Nickel Dime

T>—~;_____‘;‘~_§‘}{
] o —T.
' » ’ ' }'{ " H

.‘ ‘ T -‘

Y
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From this tree wd see there are eight possible outcomes, listed belpw. .-,
.+ . PoSSIBIE OUICOMES
J '~ Since each of the‘se possible outcomes is equelly likely, we assign to each

{ . the pro'babi].ity B'
' in this situation, as(in ell cases, "1g% 1 .. We are now inja pOsition to
| . answer questions olf as the followingj' "What is.'the probability of getting '.,
" 2- heeds and one tall when three coins are flipped?" Referring to the table
we see thet 2 heads and one tail can occur three ways out of the eight sd
that" the pro\,)ility is §.

~ -. < - . 3 - ) - - -

L . ‘ . ]

e sum-of the probabilities for all possible outcomes

T, C],ass Exei'cises L '. _ . i : e S
Use the table developed sbove to answex the following.
13, What is the probabili'f getting at leas-‘t\tjio heads?

llt. What 1s 'the probability of all th:r;ee coins being the same?

: ' , . 0
o~ 1by Probabilitx of A or B \
- " - Our previous discussion was limited to single events. Other' situgkions.
, e.rise when we want to know the"'prﬁability that oﬁe of two or more events
* occurs. Let us consider‘the possible outcomes if we roll two dice and record

the numbers showing. ‘We could use a tree to list all possible outcomes but
9: .- eanother way would be to think of the two dice as being tlfferent colors, s&y
| red and white. Then we see that we- could get & red 1, with any face of the
“white, i.e., VRL-Wl, RL-W2; R1-W3, HL-Wh, R1W5, RL-W6. The seme possibili-_
tiés exist for a red 2, a red 3, and so forth. This leads us toftne
table below.

>

v

. o
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RW

Pbssible Outcomea with Two Dice

””high school maﬁgematice class.
If we ask for the probability of getting a sum of 3 on one roll of

Y

-

(1, 2) and (2, 1) ‘The psq\dbility ‘then 1s.give£!by

' Notice, however, that each individual event has a probgbility of g%
. . - . . * ﬁ . .

-

P(sum of 3)

- P [(1,2) or.‘(2 1))

341

l

2
=3z

v

——

_RW . RW  RW Rw' R:W
(1,1) (1) . (D) (1) (50 (61) »
L)L f2,2). (3,2)  (,2)  (5,2) . (6,2)
CLL3) R E,3) e (3,3) (8,3) 7 (5,3) ¢ (6,3)
SALE) T (2,8) (358) ° {b,B) - (5,4) (6,4)
(1L,5)  (3,3) (3,5 - (,5)  (5,5)  (65)
(1,6) (2,6) (3,'?) - (b,6) | (5,6) (.{:.}_6)_. -
In the table’ we are using an ordered pair notation. For ekample, (3,4)
means 8’ 3 on the red die and. a L on the white dle. Notice that this 18 B
quite different £rom (4,3), a 4 on the red die and a Ea on’ ‘the white. ‘
Sometimes the possible outcomes of an exﬁariment ‘are represented tn e :
gle space as ,showri below, . .
> . R S -
' . 6 x x X X X X
5P X X X X_X X,
wite W x @ x x x| ; .
: 34 X X X X X X <
24 X X ‘x X x X .
14 %X x x X X X .
L AP I Gr S |
* ) red die, ’
_ _'The circled X correqugH? to the outcomes (3,&) To each'of the 36 X's
..'in the sample space we have’ assigned the probability of -3 since each
outcom¢ is equally 1ikely to all others.  Thus P(3 4) = é%‘ .
With a semple space of this type, meny probablility problems reduce L
-themselves to simple problems of - counting applied to the formula P(E) = %
' This relationship of counting to probébility is very’ importent and 1s one 7 T
of the rgasons why probability makes ah appropriate topic fqr the junior €L~

- ..

"“"the red and white dice, there are two possibilities associated *with the event,
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go tha:t we could have arrived at the same answer by adﬁing the individual
probabilities. g

oA

'

\ o .P'((iila).or:(é;l)) .'='. P(i,é)_._-+ p(aj-,f_i)_’_: 1 ;*'%g= 3@6._ :

o

™ atﬁhis property of adding proba.bilities ﬁ:olds only whe.n the outcomes under °

\«

- ';_'lqixestﬂgn are mghually exclusive;. that 'is,

hen they cannot occuy at the- same -

time. R CIf events A and B are mutually exclusive and have probabilities
P(A) and P(B) »respectively, _then s
= - P(AorB). = B(A) ¥ P(B) . o
"%~ _Consider again the probabilitiy oi‘ getting a sum of 3 or less on a
single roll of the re9. and white dice, The. sum of ~3}or less means & sum.
", of 3 orasumof 2. (Note that 2 is the ‘lowest Gum possible on two

_ dice.) - The €évent 3+ and the event 2 are mutually excll.fsive, hence we s o
2 .

T .-.P,q)eed as follows, ' A o

P(sumqf '3 or sum of 2)

[

7

P(sum of 3 or less)

i

B : . ol : P(Suyof 3) + P(sum of 2) ;
SR - : P((l,2) or (2,1)) + P(1,1) .

. [ S / :)...h. . .. = P(1,2) + PF(2,1) +P(1,1)" | : - ¥
' ' Ce ° - 1,1 1 s .

i}

i

»
l

i)

R S

Y
'37»‘1
o

Our result, of ¢ourse, agrees with that found for the same problem _

solved directly by counting, points in the sample spage. .

b » . ' L _

Class Exerciseg - . » &

. - . ] T

Use the table ggialoped in this section to answer Exercises 15-18. .

'15." What is the probability of & result with e sum of 82

.
ne .
3

*16. What is:the probability of getting a double? (both faces-the same )
17. ‘What is the probabllity of getting a double or a sum of nine? ¢
*18. yhat is the probability oi‘ getting \ta double 'br a sum of eight?

.19. Fro'm a,bag COnta‘ining 3 .red marbles, 5 white marbles, and h black

- marbles, one is drawn. Answer the’ foiblowing questions. : 'L

e (a) What is the probability of Fetting a red? white? black? W

-

(b) Wnhat is the probability of getting & red or blackY
(c) What is the probability of gettingsa whi/i}le or re?é

[y

[ 4
c (d) What is the probability of getting a red or white or black?
. ) ) . ) 3&2 B -\
. S iy
. A T . : : b



Fl
fe

vy or B, hab its counterpart. which may be asked as !‘ollowe" "Vlhe:t. is.the
: .{f‘.'_probability of. both events { A } énd and B occurring?" If we consider the simple

cesé cf flipping two coine R then we have four possible outcomes*

B . ’ - e -\.”. o .
P (HH)-,\ wn, (nE), () . S B
Ageiu, we adopt the notetion where the first letter corresponds to the. first _'
. coin; - the second to the second coin. We agree ‘that each of th.ese i‘our poe- co? ;
" sible: outcomes is \equally likely to each other. Hence to each we ,assign the _

. probehility E' ?hus, “we may write _ - S oy : e .
- : - "L . { e T
| . - P(H,u) =f | ¢
- . . " o . N N e
"I.f A ie the event ‘that the first coin shows heeds and B the event that : \ .

the second coin shows heads, then we have: P(A and" B)\ = % .-

Notice, however, that individually . L
- 2 R o ) PR R f' ‘:f:/'
- P(A) “end  P(B) = % . i
In'this cese then, o e .
P P(A and 'B) = P(A) . P(.B) B e LT . PSRN
“In other words,’ CoL - g ~. ' o 3 Y | -
. - R S e .'.‘”___ . . . -- N . - ol . -.l._
- P(H,H) = P{(first coin H) eand» ('second coin H)) ' : co
s i e, —sweren @B{¥irst coin-H).. P(second coin H) . -
. . - . _ —l . k“! . .
T2 2, S ' :
[} : . . . 1 o
= .o : -, ;
v ' C . v *. : ’
. I.-ews try this epproach on the probebility of getting a (l 1) when rolling
the red and white dice. We already know .that this probability is —g but . = .t
notice again thet the probabil:‘l:ty of each individual event (a "1 on the red o
die end a 1 on the white die) 1is E ‘so that the desired probebility 13’ o =l '

\ given by ’che product 3 3

R TR

This observa‘Bion is true.,in general whenever the ments are independent.
By independent we mean that the outcome of one event hes no effeet on the

" outcome of the segond. In ‘general: 4V . 4
v : _ If even‘ts A ‘and B ere independent Ywith '
o . probebilities P(Aj and P(B) respectively,
' -é-f then the probability that both events occur - —_ ._‘
R is given by ' .
N TR P(A end B) = B(A) - B(B) . . o
- ) ) \) . _._*‘_—-—_‘_;«_l . . . . -
343
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- - ' . : o
@ © As 55 example of the. above, suppose we flip & coin and roll a single die and
. ask. the probability of getting both a head and a 5. Certainly the two events
IR are independent and since the probabilities of the &wo events are %' and'~%f
"\ -respectively, we have N ' ) _ . '
N R
* ) - ! -_
P(H  and 5) = P(H) * P(5)
. . . T B & .
¢ e - l'. l ) . K
| L L = 3% \
' " This example is ‘dimple and could also he solved by a tree or table showing all
_ possible outtomes. In. more complicated examples, however, the use of the
e .individual probgbilities is simpler. - ¢, '
. : " . 0. *
-_,Class Exercises . N .
"gss : 20." Find the probability of a head showing .on each .of 5 tosses of a coin._
~e 21. .A coin is tossed and a die is rolied. Whst ds the probebility of getting
a head -and an odd number? e : o : e
22, In the preceding problem what is the probability of g&}ting"a head and
a number less than six?
A R . *
> * .
¥ v R , .
. , ’ . - y \
/ @ -~ . .
. 2 . - -
% . : . e
' R A PR
’, R bt } y
. C ) " ‘ \ | ] A
N Y S
. ' -3 M I' *
- - ! {l A t
* ? ’ -

..
a
w
=
&




.

o @

) . 100

~11.

12,3

13. .'

b,

15..
16..
. AT
1.8'..

Lo .
CR%,. .

‘a’J\n F1r-' .mll-‘l"o‘],_, HI,_,' i oj-

n.lean;.=.7 . ' - o - ".' .
median = 6 + - .
-mode "3.,

range-is 7 tet

‘ > e .
‘average deviastion = 27 A

‘e

(g) 7 "

. o= ov'r-‘-'.
+ o~
:_‘5’4:‘3’40\
“ .
= O
&

=
~—"
S

. . gdouble.; v o
(a), & 2%y 1 (o 2

.....

e

Note that these events are not nfgtually excluaive.
Ch,4) gives a sum of 8~ and is st the same time
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e .
: :Ghapter Exercises

"1, SiXoarts weréﬁthrown at .a circular dart beard. The following_ _ _ :
_ observations were obtained: (8 72, 3 4,5, B). - . l?\;‘;.
Each observation is the’ measured distance in- inches of a dert .

- from the center of the target.

-~
' Find the mean, median, and mode of the data. :
_ _2.' What 1s the range and average deviation of the data in Exercise 1?
‘3. Suppose in Exercise 1, all the measures had-been doubled Ry mistake.
What would happen 0 the mean? Is your conclusion true in general?
- 4, What would happen to the range and average deviation if the data, in
‘. v Embrcise 1 ked been doubled? Are your‘conclusions true in general?
5. If a bag of 100 oranges contains 9 bed, what is the probability of.
) 7 the first orange chosen,being good? If you have given away _37 oranges,,
one of which was bed, what ls the probability that the next one is bad?
~ 6. - Make a table showing the'possiéle-outcomes in ¥1ipping four ‘coins. )
Uggng the table above,vanswer Exercises T-10. _ - ™

7. What is the probébility of all heads?
o 3
-8, ,ant is the pyébability of exactly three heads?

9. What is t;z/probability of one or more heads. (Hint:' Firstefind = ¢
- the probabhility of no heads. ) ) ER :
10. What is ‘the probability of exactly one head or all tails? . .

1. An ordinary deck of 52' playing cards.is shuffled, one card drawn,
\§§ replaced, the deck shuffled .and alsecond card drawn. -
: {a) What is the probability that both cards are re .
_ (b) What 1 the probability that the first cerd A% a spade and .
Y - the second is_the ace of hearts? .
bl (e) What is;the probability that the second card is the same
’ g8 the First? o

*1# (4) What is the probability that tde two Of heartd is chosen first
A

-

and tbe three. of hearts is chosen econd?

. * \ . , . A °
12. A coin is flipped ten times and a head appears each time.\ Assuming
"the coin to be honest, what 1s the probability of a head appearing

next. (Hint» The coin does not have a nemory.




(e) The fac

' L.

¥

tfrs are: L,2,22,23, ey

.

k

oo

. ‘/ ~ Chapter 7 .- -
° o Tt . Answers to Chapter Exercisds . .
, ? 1.. (a) '\39.;'3_ b i3 (e) -..1_,80'; 722'>_< -32 X5 e ’
(BIN60- = 22 x 3.5 DNZ ) 258 = 2% 3 x b3
() 81=3" T Ag) . 516 = 2° x 3" ‘
o (a) .'98/:;22‘*‘7%’" | e 232k ='_22 X T X% 83_. | '
. 2. (a)T.c.m. =778 (b) l.cTm. = 210 (¢) l.cum. = 1517
/- g.c.f. = 6 . . ef. =17 R -g.e.f. =l
IR N ¥ " Pactors of N Number of Factors Sum of .Factors
9 "1, 3,9 . 3 .1-3 -
4 1Q ‘ '1,'.2, 5, 10 b . : TR . .
1 1, 11 2 o 12
12 N 1, 2, 3, 4,6, 12 6. b/ : 28
13 A, 13 2 . ke lll»‘ M .
Ak 1,2, 7,1 ° Iy ‘ \ . oh .
15 - 1, 3, 5,15 4 O Lo :
) 16 .1, 2,4, 8,16 5 o '
) 17 1,17 e e 2 18 - "
o "18 '1,-'2} .3,\.,:6,, 9, 18 .6 \ ~ 39, "
19 1,09 . . 2 . o¢
: ' 20 LY, Q2, b, 5, 10, 307" L 6 b2 .
! » 3, 1,20 A 4 “ ‘ L 32
22 - T, 2, 11, 220 -~ b ot 36
23 1, 23} ' ) 2 . oh .
© o 1,2,3,4,6,8,12,2 8 ' - 60
E 1,5, 2% R R+
26 1, 2,.13, 268 L ; b2
2, 1, 3,.9, ©1 . 4 ) 40
28 . 1, 2, b, 7, 14, 28 6 ) 56
" .‘29‘: ) 1, 29 _ 2 30
- 30 . 1,2,3,.5,6,10,.1.5130 . 8 @ | —q\e ©
;5 (a) 2,3,5,7,11,13,17,19,23,29 (the prime numbers ) @
. " (b) 4,9,25 (the squ{arés of prime numbers) 3 i “
(c) Three: 1, g and p2 . (d) Four: _.l,p,d,pq. The sum Is l+p+q+pq.‘

2 . .’L‘he_r;e are k + 1 of them.
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' L IR N
Y . . ( '.‘. a3 ‘- . . .
' . I" _ 3 [N
- . : ) .
, 4., (a) No, It is not possible to have exactly four humbers between two
_ ' + 0dd numbers. - Between any two 0d@ primes there is always en odd _."-
. ——— ® . . . . s -
e number of numbers. = If they. are consecufive 0dd primes ail the
= . numbers between would have to be composite. _ ‘. N .
(b). Yes. For example, betweed 23 and 29 there are exactly 5 '
» composite numbers: .24, 25, 26, 27, 28. : \ S
- ) > . . , . 4 .
5. . (a), 135, 222, 783, and 1065 are all divisible by three. * - SN
| (b) 222 1s the only number diflsible by six. | -
7 (e) 135 %na 783 .ere divisible by ning. | : . :
' . (d); T35 =nd 1065 are divisible by five. o
o \ (e) 135 and 1065 “are divisible by fifteen. * . . “ ..
' . (£)- None of the numbers are divisible by four. *' . | .-
.o‘ - ) 5 [ .‘ . . . g -
6. Rows ' Bulbs per row * :3]',;%’-2'“-
' * r B . ’ ) A "?‘
. N 112 S T met
‘ }( . = ) . .- . l” v e - .
/ 2 . - 56 . . o LN .
VR . Tk ' J . < 28 ; ~ s
S ' o 8 . : 14 N A
. 16 S 7 , CL
& : : _ . _ -,
" 4+ . (Bulbs afid rows may be interchanget.) - . A
L Y y o
' ) ». Yo . / - »*» ¢ L
T.. The pattern 103 a&five-point_e_d star. R . . :
- % _ L . . . v L
\} 4 T - v . » * - * . * l
b % ‘ . ' - [}
. ‘;; . i - 2t
o - * 2 - <
" 8. (a) No c s
» LR 4 v
‘ (b) Yes S - »
(C) No , ) ;/. Q‘ 3 ‘o
s Yy ) €.
1 (d) Yes: : N "o
) . . . * ry L . ) L]
2 . - . '_‘. .(‘ Sy '
0 . ® hd “
a <
A\ . » > * * . 4 ) \’
* . ! ¢ ! (S \
. s ° ° ) ;‘ * \e
- ) - . » . ! - : /
» - " 1 1 ;\ 13 -
* ' ~ (1 ' -
s- ‘ ' ’
o - 348 T .
» - d - »
‘ » L— l( A} ve Y N . \s.




v a ' ~ » . - . b
’ .. ' . . v | \o )
K , 8 - ' . : . . *
‘ : . Chgpter 8- - 3 ¢ '
- : : ¢ : ®
Answers to ChapterExerciseg K
. . X ) f * - o - \
1 ()3(3x10) + (2K 1) + (Tx35) + (B0-t5) + (5 % 13
) | - B 3 10° 10 . .
C () (B x5)+(ax1) (3 x D)+ x ) G x ) - :
. . ; 2 . 3 X .
- . ' 5 A T
. . 2' . | " ’ . ‘ ’ A ) . X. .
3. = (27 x 100) * (]*7 )glOO) o . ™~ .
) -\ . ) . .\ . . v ; . .
- | AR 1oo L
) . - . . l Y ¢ \ " -
.( N ) B 100 ,
7 < - ‘7)4. . - Y 2
'_}-_. ".. b - ) — [ S l . ::-l— . . + . .
" o - (;b) O‘h X 0'37 - (h x:ﬁ) -x (37)( loo) . . . .\ . .
.- N . . ) - . * -l_ ‘_];_ . . ) ." . N ‘
. . . - (\h X 37) X é OX loo) . .. _ . . i
. . . N _ ‘l . . - » .
- A . = 148 X 1600 - N - Y
& ) . © » - 1)48 ’ N ] » '7 <. . : !/ - .
o =, To00 - L o
3 ] R . . .
° ) N = .lhs 13 " o # W
-v ’ *. ) o1 o 36 . .
SRR QN SN .
.t * 6. (&) 1000 Yo~ (b) 100" °fo  (e) 10 ©ofo (g) 1, °fo (e) 5 o
: '_‘. .o 1 o ~ 6 9 o o o
_7. (a) 75'3" Jo  (©) l33§ 7o (c) 1+27 7o (d)\6§- 13 . (e) 1-3— fo ~ ;
\ ’ ”
. - ‘ .
( L ‘. i .‘ . ; '
- ) * < ) »' - \ .h I3
» n ~ - ". ,
| ) ' :
’ _
. ¢ . L ¥
' ° ‘
1] . ‘ \‘

7
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_ Chapter 9 .
o W ) .
~ Answers to Chapter Exercises o,
o - 7 SRR I B . .
R . . . —. : ) —_
1. (a) 666 ... - (b) bbb (¢) *.2787 ..n ' (a) .0202 ...

2. (a) B33 (b)) 355 \ (o) BBB -

a2 . y 16 . .
EIRNCIE- O L |
4, raﬁional: b,'e’ St . "’ i
' 5ﬁf'é.irrat10nal:- a, ¢, d R LT R -
R ' . - K . - '
' fﬁr{'ﬂ’ratiOnalt a, ¢, e = Lo e - - ;: Lt ]
{‘ :‘iryational} b,.d . . ;’~ : ' . .
I Y o ll L . '
v P, v e B ] - L. .
L. : S T - .
S ngnswers will yary. o I ) ' L
. (8) rational: 0.3%533 § O, 31+531+T - .-
[V .(0) wrratigh: o 31+531+5331+5333 D5 033373 o wr
;8_} . % = qh2857 11285 o . £ '% = ‘1-1+28571)128 cer . ’
’ . ? . . . C o .
N ' .,27= 285711+ 571 /‘.. %—fﬂe&j?lﬂe}}s R o Y‘I’;? .
. . ."’ ‘;_ ..
32 b 8571178—'2 5T ... 8L eruelTiE ... SN

N te that the é%me digits appear jin esch, representatlon, (1,4,2,8,5, 7). {
These then. reappear in cyclic fashxon?isr each decimq} wf%h«the 1nitial :

e
- dlgits belng in the order 1, 2, 4, 5

8. o S '
! l b ' 2 r g . ) .
0 g S . ( R RE v
g S EES X~ o780
o ;,,'“%/"7,,'{307 ’ 163 = 0 ’ (x ™
£ % = .38We15 I 361538 f e
- ¥ ' .
PR . e~
' . _113_ - 538461 v e = - 61538k _—
oL - e , - TP
R . vl o S
' + ) . (
0. (@) 1,2, © L te) 2,3 '
' b) 11,12 ‘ ) 9,16 Py
le) 3,4 T (g), 1k, . o
ay 5.6 (n) 8,9 ¢ -
4 N .:
' ~> 4." Yo V’ * s
u ’ - X . ~|
+ - 1985 ,
, 351 o



v 11 (a) 30% te) s (1) 8" . (w6 .

» o e - - S .10 0
’ (v) V3 »o(f) 5 (3 2 (n) 1557 -
A\ . (e) o o (e) ‘7% | 33 . (o). V13
(@) = - () T. () /B () 5 :
. -é-g . : PR ‘- ' M :
counting numbersq : &, e; £, 1, J, k,m . 1 . v .
_ rgtional' numbers : &, d, & n'v . . ' . '
irrational numbers : b, h, 1, 0, P S :
] 'C . ° ,\ . : Y l
‘. P . - ¢ R s
* Ld ] ‘
A} . . Y . ¥
. , *
- ' . ’ . B , P
\' . . . 4 "
_ . - R
i i <

\‘ . .
o ‘\/—- ’ . !
» L
- - . . »
. . . - .
. \ . ° . R v [ . l . .,.
e . * . . i
- » " .
‘ .o R
- ’ F
A3 * - M -~ . i . . \
> hd . R
. . .
‘ » . - .
L - . ’
. .

- I4 b \
, . . . -
hd - 0 ) T < . v
- KR . -
”a N -
) ) ) .
- o. o . . <
. - 9 RN L B
S 4 A .
. ¢ . L, '
L] - - - : » [}
' o X T
' .
* . ’ : '
. . 4
-~ . » ,

PRt
AT s
-

.

| e ' v ‘ . LA TR
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ercises

* Mngwert to Chapter

(@) 80 .

() 20,22 ;o

_(a')}

' (a) - see 'E)(encige 1l..
() - -
. ' .

" (b)

_V -

- -

: 7/' &’ ) o
P

' ] Y.
’ <
.

N

-

v

.



S 6, ! AB denotes the line passing through points® A and B.

o ‘p ‘AB is the.Segment with A gnd as_eﬁd pointsn-. L ,
. - BA °1s thefray statting at point and pasging through A. -+ . -
e ;u" AB 1s the ray.ggarting at point’ A -and pagsing through B.
7, Maqy answers, are poss;ble, bni} one set is given. _ : . ’
(a) a5F, FBC J . () we, a0 '
: (o) HEF, DR . . . (e 4B, JD, BC S
® (e) yHEF, ABF,fFRC . ' (n) HEfEC, M |
A "(d) -ABF, HDB,)FEC T 'J(i)- EAB, HDB, FBC, DAB - }
“+ - (e} EA, FB * '-' | - '
o : : . . : . '}
» 8., One plane, if the ?oint is not on the lirde. « A .

A hd »

9. At rst not enough information seems*to bde giveﬁ. How far apart are

. v .
the houses? The total distance walked, and thus the minimum distance,
~wquld seem to depend‘upon the distances ,betweén each house. Let~us_

-

étart hOWever, and for the moment assign dlstances between houség\

as shown. . . : S, s T - -\
* ' "” «/ ’ 3 .' 2’ ’ : 2\ H ’
L . ; % -g, _‘. 5 ‘ . -
. . At .91 -3 % g ¢ " p °
,:‘ _7.. ) Then if meetlngs are held st house A, T Dboys must walk distance dl,
"k must walk d,, »ana 2 must walk dy, SO that the totel distance
walked is . & f , ' *
. . o+ hd d3 (house A) .
. . - i - > ‘
«Using the samp‘irgument gives the following: T
» ! .
T . K 2d, + h?b + 2d3 _ ~ .(house B) <
[P 24, + 54, + 24, (house C)
e . . 1 e T3 :
- : . LT at + 5d + 7d3 - - {house D)
v . . -
Examining the four cases’ shows that meeting at house B will minimize
. Rk
*  walking. - Surprisingly enouéh, the conclusion is the same regardless of
the distances &, d,, and d3.“ _ ~ ;
1 - - Ty ' -
v L { .z N
. Yo
’ . .

. - - -
» t L4
L . .- . x

- . / ~ - .
Lr ~ ' ,, -
- hY ’. - [
. A _ R _1_5)(; : o .
. - L 4 35“ . 2 -
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S RO . = Chapter 11 L ".
. : . . ’ ’ _Q.f . .
' ] ’ " ¢ Answers to'Chapter,Exefcises R '
o . ’ : Y S
T 1. The models form airectangular prism and a hexagonal prism. : "-.\
2. a and d are closed only a is a simple qlosed curve. = ° ’
:)3. The angles dre not equal, since they- are.two different angles. Recall
“ Y .
that angl®es. are sets of points and that sets are equal only when they
. are identical. . |
R Ansvers mey vary widely;: only samples are given. \
N @ S
_./ ’ . » |" *a
. (o) | -—— — , -
) . ‘L > -
. - R ‘ LY
» ’ ¢
oD, o
‘..' ’ . V 14 ’
Q’. g. R . . - - ) -
5.  Nos Euler's fo;mula does not hold. V = 12, E = 20,'F =9, and °®
V-E“‘F . -J. w© ) . .-
6. If a- Moebius strip with two twists is cut down the middle, it falls
'3 ’
into two loops which are interlocked. N -
1. !
1 .
-
o T
S L ~
. ' v
< o
. \ . " .
- . b ‘ "
~ " ! ,
4 . i ’
o n
. » A}
. "\ * .
. 2 (
4 . » ‘ ) -
’ ) ‘./'- ' -~ - !
o » 19g ~ .
- .‘ » -



e 1 \ - - . o s
R T A\/l -
s \\ ) N ¥ .‘ T - \ 7 ) ‘ ’
7'. _' . - * - e N »
. -\\Chapter' 12 , » . .
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Anwgers to ﬁhagter Exercises o 1<
N Y * . K . ._ \l L]
1. . . Subdivided to 5 inch

¢ } | l l : o ’ ' .9
_. - . N g T 4 V
e, . ' : ‘ ) . ' . ‘ - .
. as, ' ' - B . Supdivi%d to [ inch ,
\ p
. Py .. o
’ * . ' . \ . v
. . . . 7 _ . B n
. 3. The dlmensions of the ‘J.arger_sseetangle should bg 5117 by 33— " "
e : . ' £ A " "
- The dimension‘s of the smeller rectangle should be h%- by 31]-;- e
b, Square, rectangle, pa.rallelogram, rhombus, trapezoid‘ "kite". (There

K4

mei be otMrs ‘suggested. ) r ,
] V . < - f
5. A polygop whose. sides are congruent and whose angles are congruent.

- - A L] ]
6. . Two circles aye congruent Af their radii_are congruent. ' .
. ’ ]

- »

T. They are perp€ndicular. -

8. One radius is twice the other.

9. Given a point, % and a distance 1, a sphere is,the set of all

pomts dn.space at distance r ‘from point C. -« - : x
“

. 10. ©Not necessarily. - The definitions will_vary depenciing or‘1 what is
) congldered a "line" or "sEgment.:." on a sl;here, and intuiti’ve.definiti'ons
J&\ should be accepted. This 1s difficult to define because a "triangle"

. . may have more than one rlght angle.” Note:' The purpose of this axer- .
~ clse is to cause ycm to- cdnsider the "ground rules" of plane geometry', )
, and that these rules do noti.) necessarily hold in anothdr p,hysical

¢ sltuation. - ’ _ o b

. . N Pl
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A - - Chapter 13 . ' St

A 4 - . Answers to Chagter Exercises o
1. (ap 1 ‘foot. each - {v) h5", Lt
v
e _ (c) h is not the sum of 1, l, end 1. Even though each error was less.

than one-half foot, the s of the efrors was over half a foot =nd

o therefore must be counted in the measure of the pevimeter:
« LD N | 7

2. The square has the greater area. _ ' - »
. 3. (g) - +116 sq. units ' _ (5) 114.5.sq. units .
L, (a) 90 cublpéwnéhes approx1mately. - A -
_ (v) Approximately 11l. L cubic 1nches. ) o
*_ : (£) Even though each error was less than one-half® inch, the product
of the three numbers in (b) would 1ncrease the volume. measure
' © gignificantly. : ' i
' 4 » 3 .. ,
5. 'L feet * . N : -
—-5 e . / o ry .
6. Approximately ~0.00h cubic inches ': .
9 . ' »
7. (a) Approximately l3 inches % e
v (b) Approximately 38 Jubic\gnches , .
' () Approximately 63 square inthes - e -
- N l" 1" 1" P ' . "
8’ . (&) 9 ’ 72 ) 5" (C) 391%' cu. ‘in. "'
ln 8}_" 61;" M 8 1 . N -
| (b) 105, 8, b3 (a) 580y eu..in. . \/
. . - . N
I w9 (a) 64 sq. in. ($) 6£hbq. in. :
' This errdr_js difficult to spot. Most people do not cut these exactly
° and miss the fact that there.is a small parallelogram of area 1 square
. ‘ inch in the center of the completeg__gttangle. The figure mlght look
similar to this: \ _ . . \
. ’ . , S
-1 sq. inch
.10. (=) Circumference is doubled. *° N '
(1‘{) Area is U4 times as great. : L
& ) | ' ‘
' ’ _ —~ *
4 )
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. o Fhapter 14
. . - © Angwers to Chapter Exercises
. » . / »
o 7
.l. s Nean = 5§ .
medien = 4r .€ ' )
. .2 . . ! r)
mode = 4 _ o - T
: | 1 o TS 3
* 2. renge 2 h§
average deviation = 8
3. The mean is also doubled. “
. S KXo h X b e 4 X
m = o
oM n . :
" 2%, + 2%, -+ ac3+ cee 2K

The median is likewise doubled, for the middle element is still the

4. The range is also doubled for if x_ is the smallest and 'xb is
the Q.argest i‘n the original distribi!io_n tl(e range is X, " Xge The

new range will bAe, 2x, - 2x = 2(xb - xa).‘

-

A

‘The average deviation is doubled as the following exemple consisfing of

N\
’ four elements will indicate. - N |
: . i . .

{a, b; C”a] - J; . T

s _ 8 + b +c¢c +4d .
A T R} &~ .
. v a-m +b-m +c-m +d-m
oy 1 1 1 1
.Ave‘r‘age dev1at10p. =,\’\‘_ ——
. \ a+b-+c+d'-hml ’ *

J : S - - . E ’

{22, 2b, 2c, 24} A ’ .

" _2(a+b +cv+4d) X -
m2 - L - 2ml ‘n )
' N 2&+2b+2c+2d—hm2 -
Avertge deviation = — — :
J 28+2b+2c+éd—8ml a+B+ct+ad-bm
\ Ve = " —=2\" I
O .
j6l - ’/ . -
. . » 292 .
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P(af. least one H)

.

t

- P(three H's) =',Ji. .

i}

Il

10. Plone Hor TT T'T)

1

-~

P(one H) + P(T T T T)

1 + 1
P16
5
16 .
1 L L
2727
r % __l__ o1
T 752 T 208
L .
52 ,
g L
52f( 52
o ,
‘ ' < A
-, /
- ‘ MY
J rd
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1 -

1 -

15
16

P(no H)

1T TTT) 'f)
1
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g Mathematlcal terms ﬁﬁd exﬁfiiﬁ;qns aré frequently used w1th dlfferent . "

meanlngs and‘connotaf&oﬂs in diffgrant fiegd% or levels of mathematies." The , o

)
’following glossary exp&éina some. of the mathéﬁatical words and phrases as
.they are used,in this book. ~These are%hot intended to be fommal definitions.

."\.,-

T Mdre explanations as well as flguraa and examples may be found in the book

." by re(erence thHrough the index. L : -

0 ASSOCIATIVE PROPERTY OF ADDITION. . For the three numbers a, b, and c

6. . R . [
. N _{ ". - \

oy - . . . .

- ) R A ) ) - ‘ . : .‘.'

] -

ALGORITHM (ﬁLGORISM) A spec1al prrcess for solv1ng problems._ -

ANGLE. The union of two rays which hawe the . same endpoint but which do

not 11e in the seme line. . Y . - o
ARC. - A part of @ circle‘&etermined by two points on the circle. o . "

. .

AREA. A measurement in terms of & specified unit Whlch is’ assigned to.a

closed region. Note that both number and ‘unit must be- glven, 8s

30 square feet. ) . -

L 2 - . . . 7 . -,

. (a+b)+C=a'+(b'+0) v

N -

- L]

*# ' ,
*ASSOCIATIVE PROPERTY OF MULTIPLICATION .For the" three numbers <, b, end ¢

. (axb)xc:ax(pxC)
‘ . : . ) ' ) *
t ?
- . . B
. - .
BASE (p&k @ numeration system) The number used in the fundamental grouping.
* N Thus . 10’ ls‘;he base of the decimal system apd ? is the base ofﬂthe
_J ingry system. . . .

-

BASE (of a geometric figure).” A particular side or face of 8 geometric ’
figure. ¢ -

- ‘ )
BINARY .NUMERATION SYSTEM. - A numeration system whose base is two.

' o [ . e

o, .
BINARY OPERA&ION. An operation applied to a pair of numbers.

.

”

' BRACES .{ ] SymboLs used in tHis book excluvlveLy to indicate sets of
ohjects. 'The members of the set are llsted Sr spec1f1ed withir the

braces. . ¥ .

. - - ' "4 : . .
BROKEN LINE CURVE. A curve formed from s€gments joined end to end but | .

not forming a straight line. . ' - . s

. .
. . . .
) -
-~ -

o P

.. a . . t .

. . »p
.
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C,I’RCLE?'*&'h@»set of all Qﬁnts in a. -plane which are’ the same distanc:e frqm
PR ‘o given pointy A simpie. elosed curvé in & p],ane each of whose points

+1is the same' distance fyom a'fixed point. ) ' R
* 2 . - : o . Y

- hd '
b X

CLO D' CURVE, A curve thet can"be represented by a figure that starta,.and
stops at the same pb‘.tnt. " R . Y e

.; ‘.0' ;‘. ., < + - «

CLOSURE. An operaﬁion in'a set has the propexrty’ of closure if the result .
of, the operation on memb.ers of the set is a memb.er of - the set. ~ .-

-

IR ¢ .

'-«"~~ COMMUTA‘TIVE PROPERTY @F ADDTITON. For the. two numbérs, & and b

“a .

»

e R e T
- P - . - . - v \ . .
. l

COMMUTATIVE PROPERTY OF MULTIPLICATIQN. For the two ﬂumbers a and b t,

Lo a x b=b >< a . - . : \ _
' ‘:/ e ¢ . . \ RN N
COMPOSI'I’E NUMBER. A..whole nunﬂSer greater than "1 which is nqt a prime
umber. : . BN - .

:"1

2 s v : .

CONE . | £
intersectioh is & simple elosed curve. he cong is that part of the
coniéal surface betweden the vertex and the plané), the' vertex, and the -
tlosed region cut from the plane_ tha~t forms the base. L

v .

_ _ -
CONGRUENCE. The relations'hi«p-between two geQmetrlc figures which have

.

exactly the same size/and shape. . .
CONVEX POLYC—ON. )-A polygon whose interior is in the interior of each. of
* its angles. 1€ is also defined as a polygon which lies entlrely in
_.or on_the edge of the half plane determlned B‘y each of the sides
in turn. - * _
COUNT]NG NUMBERS.. The numbers used in counting: {1, 2, 3, ¥, 5, ..} - |
CURVE. A set of‘ all those pomts which lie on & pax’(i-c‘ular path from.
A to B.' “ _

CYLINDER. A surface f'ormEG'hwhen ‘two pafallel planes-intersect a cylindrical
surface. It is the portion of the cylihdrical surface between the
planes, together 'with the closed regions cut from the planes. N

CYLINDRICAL SURFACE. A surface formed by all. lines passing through a
simple c,losed curve in a plane, parallel “to a-line not in the plere.

LW

. - . i . .t i . "
\,. D e
' .- ———tn, '
DECIMAL. . A numeral written in 4¢he extended decimal place value system.
.o . B s
DECIMAL PLACE VALUE SYSTEM. A place value numeretion system with ten as
the base for grouping. : o '

.

DEGREE. A common unit for numerical measure of,angles. The symbol for

I 4
a degree is © . * . 3

.
-

. PRI .
., ro. "
’ V' -

?-
formed when a plane! cuts a oonical surface such that the -

-

‘1.

L
.

-

\
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L DENSEr “A roperty of the sets of rationél and .numb.ers. The ratfonal
(real numbers are' ‘dense because betweenr two rational (nqal)
« » numbers there fis a third ratlonal (real,; number. T .
~ D -OF K CIRCLE. A line segment which comtains tﬁa c‘enter qf the

: circle and whose endpaints lie on the circle.

. .
. ’ p S, e .

- D?f OINT SE‘I‘S * Two or ‘more gets which heve' na members in common: P
’ : 2 ’ v xSl ) ) *
DISTBIBUTIVE PROPERTY "+ A joint property c:c mpltiplication and add,ltion.
Y Thi's property says that mua.tiplica.tion is distributd.ve over pddi.tion.
ce ‘Foranynumbers &, b3 b*' mg Cyw - ‘e a” .

% . - . -~

< a)é(b+c)=(axb)+(a>_(c)‘4.

e’ . 7‘ ) » 4 . s _,.

o . | R ot ‘
'ELEMENT OF A SET. An object "i_n 8 éét; avmenbér of &-set. © A
: .E.MPT-Y_SET. ~The’ se?t wh'ich has no meniberé. o B ~-“ - SRR _‘ v
.. EQUAL,"' symbol ‘=. -A B meens that A~ and B are two d,ifferen.t names
. " s for the same ob,ject i .. . I .. .
. e .

EQUIVALENT NUMERAI.S. Numerals that na.me the same number,

» .

‘ EQUIVALENT SETS. Sets that cen be.put in_tp a éx}e-*bo—one corre'_&’o\n'denc.e.
' EXPANDED FORM. 532 writteh as (5 x 10%) + (3 x 10) +'(2 x 1) 1is seid:
.to be written in expanded form. . , :

¢ oy, 3500 ’ . '
- . ) : H £ "‘l- —i?" %h . . '
'AJ .o . tad ’°> ".7 } : .‘. ’

a - . oy . 2 F = 4 e (]
FACTOR. If bx =a, with g, b,. and X, whole numbers, then b is -
-a factor.of a.- : - "

*+

FRACTION: Any expression of the form ? wheré x and .y represent
* numbers.
' ) - / N . . . T
. . : -G .

GREATEST COMMON FACTQR. » The 1argest whole number which is a factor of, two

or more given whole numbers. s - V
\

HALF-LINE* A line separated by a point results in two half-lines,
wnelther of which contains the point. - . ' L FE :

HALF-PLANE ‘A plane separated by a ‘line’ results in- two half -planes,
neither of which contains the line.

»

HALF-—SPACE. Space separated by & plane results in twe half spaces,
neither of which contains the plane. :

. 365 206
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. IDENTITY ELEMENT FOR ADDITION f ‘The, nuiber” 0 i‘r1Ch has the property
X O+a=a+ O . . - T
. . L.

Y IDENTITY ELEMENT FOR MULTIPLICATION The number l Which has the. R

property that S 1xa=axl=a. ) .

-
.

.INTEGER. Any whole nimber or its opp051te o . s

. i -
- . -

AR INTERSECTION OF TWO SETS. The set of all elements cormon, :to-each of the
: L, given sets. . o .

- IRRATIONAL NUMBER. = A real number which caqnot be exprESSed in the form
where a 1is an integer and b 1is a countlng numﬁ@r,, t.e., any - °
o nurfber’ that is not a rational number.. e

>

op
»

-

: L | | . L
. - . .. : .

- LEAST COMMON MULTIPLE. The smallest non-zero whole number which is a
- multl\ie of each of two given whole riumbers.’

- LENGTH OF A LINE SEGMENT. A measuremégt in terms of a specified unit
) which is assigned to the segment. Note that both number’ pnd unlt\
~ . must be given, as 3 Tfeet or 5 miles, etc.” . i ) . .
° * . . + SN » . .
LINE (STRAIGHT LINE). A particular set of, points in space (an undefined
term in geometry). Infofmally it can be thought of as the extension
of a line segment. . o . v

. L3
’ P -
)

LINE SEGMENT. A special ‘case of the curves between two p01nts. It may
° be represented by a.string stretched tautly between itartwo endpoints.

hd . ) N R -~
, . . . - ) 7
- A4 ’ T M ’ . ot
R 4
L]

MATCH. Two sets match each other if their members can be put™in one-to one

- eqgrrespondence.

N r

 MEASURE. A number asz}gﬁfg to @ geometric figJ;e indzﬁating its size
with respect to & specific unit. N .

o
-

MEMBER OF A SET. An object or element in a set’

-

METRIC SYSTEM. A decimal system of mcasurc with the meter as the steanderd
ynit of length. ’ . \

MULTIPLE OF A WHOLE NUMBER.~ A-product of that number and sny whole number.

N .

v .
‘ NEGATIVE RATIONAL NUMBER. The opposite of & positive rat ional number.
' _ (See OPPOSITE NUMBERS.) . .

NON-NEGATIVE RATIONAL NUMBER. All the‘positive rational numbers and zero.

LY

' G ‘ _. ) ; 5EAC);' | -




e . "3 ‘gsee Wholé number = - I o ‘;' 2
A A Counting number : o
' , # Rational number . '
« . ' Negative'rational number o)
' Isrational number S ' ) R
. " 4 . - :
- ) . " Real .number . . : _ . ‘ 5
> . . . .

5o .
NUMBER LINE A_model to show ‘numbers and their order, The modgl'is used
*  fdirst for the whole numb rs. 'The markidgs and -names “Are ektended -as
«  the number system 13-extended-unt11 finally a/ 1-1' correspondence is
.set up btheen all the points of the line end all ﬁhe reai numbers.

L - _*= .
NUMERAL. - A ndmhe . or symbol used for a number. b --({‘ AT ¥ !

S *
NUMBER SENTENCE. A mathematical sentenpa sta;ing a relgl 1on3hip between__

3 mix-nbers. ;e | / f g

.‘ -

‘ ]

NUMERATION SYSTEM - A‘numeral’ system for- paming ngmbers.gi

ONE-TO-ONE CORRESPONDENCE. A pairifg between. tWo gets A, B, which * .
" assdciates with each memer o A a slngle membervof B, and with

.

each member ofe B a single gjember of A. . .

OPEN SENTENCE "'A sentenfe wlth ne or more symbols that may be replaced
< _ - by the elements of a fivenifset.

OPERATION. A (binary) operatl n s an assodiation .of an ordered pair of
~ numbers with a third numb r. _
OPPOSITE NUMBER§. A peir of_ umbers whose sum is’ 0.
.‘*,._ 4 . S . N Y .
" ORDER. A‘thperty‘pf & set bf numbers which permits one to say when ;
and- b _édre in the set!whetﬁer a is "less than,” "greater tRan,”

or "equal to"- b,

& A4 -

; co f
ORDERED PAIR. An ordered fpair of objects is a set of two objects in which

one of.them 1s,speci ied a&s beipg first. .‘3

&

*
.

'f PAIRING. A éorresponde ce between en element of one set and an ¢lement of
another set. / . ) |

. o e .
PARALLEL LINES ‘Lineslin the same plane wyhich do not intersert,

PARALLEB'PLANES Plapes that do not intersect.
.PARALLELOGRAM. A qugdrilateral whose opposite sides arc parallel.

* PERCENT.  Means "per-hundred," -as 3 per hundred or 3 percent.

-

PERIMETER., The totpl lgngth of, & closed curve. -

r
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. [N » 4 N 1
! vt )& ' . 3 *
:r . L i T i '
P." . » ¢ N \ - ’ ) L ‘
N PLACE VALUES.' The velues given to the different ‘positions 1n a numengl
\ .. L I :
o, PLACE VALUE, NUMERAH’IO(SYSTEM r{ namerati(on system wirich' usés the position .
L or pla:ce in the numeral to indicate the value of the digit in that ) :
. . Placer . Coe . . ‘v
. » B - - te

AR -
PLANE. A particular'%%t of points{ It ‘can be thoyght of as_the_extengidn-_
. of & flat surface such as a table. Usually_an'undefined te;m in,

. . geemetry. . : : _ o
: v, . 4 : ) .
ot »
. \ PLANE CURVE,( A plane cﬁrve,is a cdrve all points.of whiceh lie in a plane ~. !
., PLANE CLOSED REGION..® The 1ntenior of any simple closed plane curve together
wit’m the 'CUTVe e T ) I . . . s S
’ - L7 - 4 ANV
A POINT. Aﬁ'undefined-term. It~may.be thought of &s an’ exact location in ..
o L qspace. v, - . * T e ‘ M
. T .o e T e LI T o .9'. .r‘ o ._-/L.
. . . EOLYébNg A simple closed curve in g plare. which 1skthe unlon of three or _
4. - ol moré line segments. - . . 5.' 'E'F. - J L -..-r.
R A T . ' o "1,!;-
o ‘ POSTTIVE. RATIONAL NUMBMR. Any — thet cen. be expressed as %_ where ¥ /s
S e . a is a whole number and b is a countin§ number. T, L
e vt T R/ S

POSTULATE A statememt which is accepted witpout proof =

v \‘, R - - N ’
PRIME NUMBER. .¢+Any whole humber. thgt hﬁf exactly'two different factprs b
(ndmely 1tself and 1). ; t S L e, T

PRISM. A surface consisting, of two congruent polygonql region! as bases

and plane regions bounded by parallelograms as lateral faces, s
'."1" s .
o PROPORTION‘ *A statement & equality betWe two rat los.
- ’ [ &- '
PYRAMID. & surface which 1s a set of p01nts ‘consisting of.a polygonal 4
region called the- base, a point called the vertex not in the same . a

plane as the Rase, and all 'the triangular reglons determined by the
vertex and. the sides of the base. _ N
j & I
£ - . .
R A
RADIUS OF CIRCLE. A line segment with one endpoint the center of the circle
and the other endpoint on the circle.

* RATIO. A relationship a°b between an ordered pair of numbers a and

Y b where b # 0. The ratio may be also expressed by ,the fraction T

RATIONAL NUMBER. Any number Which can be written in the forﬂl*E? where 3’
- is an 1nteger and b 1is a countig number. .

e .
RAY. The union of a point A and #11 those po¢nts of the llne AB on the
same side of A as B.

REAL NUMBERS The union of the“set of ratlonal numbers and the set of
. ‘ 1rratlonal numbers.
: ¢
e . 5 v 3680 ¢ ' ' -
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RECIPROCALS . Any pair of) numbers whose product is 1. N .
REGION. See PLANE REGIOl\L. o g o

REG'@UPING. A word uéed to replace t.words scﬁrryi.ng" and "borrowing.

RIGPHJ RECTANGULAR PrIsM. A right prism whose base is a rectangle.
» - ’- s ) A ' . L4 * E
> _ . N e ] -
/") . . [ S .. * M
r : . . e »
smmm /See LINE smm..\, ' S . -
S'EPARM’E To divide's glven set of points sucH as a- line, plane, sphéz'e
ST Xspace etc. into disjoint subsets by use of another subset such as a,

peint line, circle, plane I,ate - . v .

) ﬁ'I'. A set is any collectiOn of things listed or sperfied well eriough
. 80 that qne can say exactly whether a certain thing "does ‘or does not

» belong to it. . !
’ 4

s

_SIMPI‘;E CLOSED curfE. A plane closed curve which does not intersect itself.

_ S]MILAR "A relationshiﬁ between two geometric f/gures which have the
same shape but not neéessarily the same size,

1)
SKEW. ,,Two lines which do not intersect and are not parallel.

"_SOLU‘I'IO’N SET. The set of all numbers whlch- make an open number sentence

Qtl’*ué. v o - ,
. =2 .
‘SPACE. The set of all pointg. S
" SUBSET. Given two sets A 'and‘ B, B 1is a subset of A 1if every member
of B is also a member of A, . & . o
- ’ \
% " T

" TRIANGLE. A pqlygon with three sides. .

. . - . . ’ e

UNION OF TWO SE‘I‘S The union of two sets is the set of all elements that
are in at least one of the given sets.

-
o

- UNIQUE. -An adjective meaning one and only one.

3

VERTEX (pl. VERTICES) ’
« Of an angle: the common endpoint of its two rays.

of & polygon: the common endpoint; of two segments. ‘
of a prism or pyramid: the conmon endpoint of-three or more edges.
N -, ) Fa i : . %
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e ‘) - VOLUME. « A measurement ig térms of A spetified unit #hich is assigned to
* a solid region. Notg that both Mumbe d unit must be given, as
v . 3 cubic feet. S B N .
~ - - _ oLt . o - R, ¥
. . . ] | . - . X \ w ) . ~-
" WHOLE NUMBER- Thé counting nembers :and the number O: .(0, 1, 2, 3, &4,

W .ol T Ce : sy e - . . . * Y
. - . . - e . .
. i . . ° . . Z . . ) . .‘.. ¥
u ] ) - . . - | . . - . . ‘ _::L-
' : . : R - : . Lo
. ZERO‘ The.number associated with the empty set«  ° . Sy
. [ - L e "' ;- . . . . 0 ".‘ -
: : - : : « - : - )
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